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Abstract

Relay stations are an important component of heterogeneous networks (HetNets) introduced in the LTE-Advanced

technology as a means to provide very high capacity and QoS all over the cell area. This paper develops a self-

organizing network (SON) feature to optimally allocate resources between backhaul and station to mobile links.

Static and dynamic resource sharing mechanisms are investigated. In the static case we provide a queuing model to

calculate the optimal resource sharing strategy and the maximal capacity of the network analytically. The influence

of relay planning and number of deployed relays is investigated, and the gains resulting from good planning are

evaluated analytically. Self-optimizing dynamic resource allocation is tackled using a Markov Decision Process

(MDP) model. Both stability in the infinite buffer case and blocking rate and file transfer time in the finite buffer

case are considered. To achieve a scalable solution with a large number of relays, a well-chosen parametrized family

of policies is considered, to be used as expert knowledge. Finally, a model-free approach is shown in which the

network can derive the optimal parametrized policy, and the convergence to a local optimum is proven. 1
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I. INTRODUCTION

Self-organizing networks (SON) mechanisms have been introduced in the Long Term Evolution (LTE) standard in

order to empower the network by embedding autonomic mechanisms, namely self-configuration, self-optimization

and self-healing ([1], [2]). These mechanisms aim at simplifying the network management, at reducing its cost of

operation and at increasing its performance. Within release 10 of 3GPP, enhancement of SON features have been

introduced into the LTE-Advanced technology, such as the enhancement of mobility robustness and load balancing

self-optimization.

Dynamic self-optimization targets on-line network implementation of SON mechanisms with short time resolution

(e.g. seconds to minutes) for adapting the network to new operation conditions such as traffic variations. The

requirements for SON solutions to be adopted in radio access networks are the classical goodness criteria in

optimization and control: existence of optimal solutions, convergence to an optimal solution, speed of convergence,

monotonic improvement of the goodness of the solution, stability and robustness to noise. Previous work on on-line

network optimization include the popular utility-based approach used in [3], [4] and [5]. Reinforcement learning

has been investigated for example in [6].

LTE-Advanced introduces the concept of Heterogeneous Network (HetNet) as a mean to increase network

capacity. HetNets comprise low power nodes deployed in high traffic areas to increase capacity, namely picocells,

femtocells and Relay Stations (RSs). Autonomous resource management in HetNets is among the important and

challenging research avenues in SON for next generation radio access networks, encompassing load balancing,

Inter-Cell Interference Coordination (ICIC), mobility management, and other self-optimizing resource allocation

mechanisms.

1This work has been partially carried out in the framework of the FP7 UniverSelf project under EC Grant agreement 257513
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This paper focuses on self-optimizing RSs. RSs are linked to the macrocell by a wireless link which replaces

the wired backhaul. We will use the term “station” to refer to a Base Station (BS) or a RS indifferently. Radio

resources have to be shared between the BS to RSs links and the stations to users links. The resource allocation

which maximizes the system capacity depends on system parameters such as traffic and RSs placement. Both static

and dynamic mechanisms are investigated in this work.

We first derive the static resource allocation which maximizes the system capacity. We then show a dynamic

resource allocation as an optimal control problem. We give a systematic method for the controller design, in three

steps:

1) The problem is modelled as a Markov Decision Process (MDP), and the optimal controller is found. This

optimal controller is to be used as expert knowledge during the next phase.

2) Based on the previous controller and a queuing theory result, we introduce a set of parametrized policies (the

expert knowledge). A method to find the optimal parametrized controller is derived and its performance is

compared with the optimal controller.

3) Finally, we show a model-free (reinforcement learning) approach to derive the optimal parametrized policy by

observation and interaction with the network. We use the policy-gradient method featured in [7], [8], [9].

The contributions of the present paper are:

1) A queuing analysis to derive the optimal static resource allocation in closed form, and the impact of the major

system parameters such as RS placement, number of deployed RS and RS size on the system performance.

2) A systematic step-by-step framework for controller design, with rigorous proofs of convergence and optimality

of the methods used.

3) A model-free approach with monotonic improvement of the solution during the learning phase. This is

fundamental for on-line implementation in an operational network.

The paper is organized as follows: Section II states the system model and the optimal static resource allocation

strategy is derived in closed form based on a queuing analysis. The impact of RS placement, number of deployed

RS and RS size is analysed. Section III models the problem as a MDP, and a parametrized set of policies is derived

based on the optimal policy. Section IV presents a model-free approach to derive the optimal parametrized policy

by interaction with the network, without degradation during the learning phase. Section V concludes the paper.

II. OPTIMAL STATIC RESOURCE ALLOCATION

A. System model

We consider the downlink scenario of a wireless network where users arrive randomly according to a spatial

Poisson process of intensity λ, to receive a file of random size σ, with E[σ] < +∞. We assume independence

between the arrival process and file sizes. We assume that there is no user mobility and that users leave the network

upon service completion. We denote by A ⊂ R2 the network area which we assume to be bounded. A contains a BS

(alternatively called macro-cell) and several RSs. We denote by NR the number of RSs, and we use the convention

that station 0 is the BS and station s , 1 ≤ s ≤ NR is the s-th RS. Let As ⊂ A denote the area covered by station

s, As =
∫

As
dr its size and A =

∑NR

s=0As the network size. As mentioned earlier, RSs have no direct link to the

backhaul, and are connected to the BS by a wireless link. This wireless link uses the same radio resources as the

station to users links and we are interested in finding an appropriate resource sharing method. This mechanism

is often called in-band relaying. Depending on the multi-access radio technology, the radio resources can refer to

codes in Code Division Multiple Access (CDMA), to time slots in Time Division Multiple Access (TDMA) or to

time-frequency blocks in Orthogonal Frequency-Division Multiple Access (OFDMA). We ignore the granularity of

resources and we denote by x ∈ [0, 1] the proportion of resources allocated to the link between the BS and RSs.

We further assume that Round Robin (RR) scheduling applies in all links: the link between the BS and RSs is

shared in a Processor Sharing (PS) way among the RSs, and that each link between a station and the users it serves

is shared in a PS way among those users.

B. System capacity

For a given x ∈ [0, 1] we now calculate the capacity of the system, and the optimal resource sharing strategy

x∗ which ensures stability whenever it is possible. Namely, we denote by C the capacity of the system defined as
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the maximal value of λE[σ] that keeps the system stable i.e the number of users in the system does not grow to

infinity. We write Rrel,s , 1 ≤ s ≤ NR the data rate of the link between BS and RS s when it is the only active

link, and Rs(r) , r ∈ As the data rate between station s and a user located at r when he is alone in the system. The

effect of inter-cell interference is incorporated in Rrel,s and Rs(r), hence the results given here hold regardless of

the amount of inter-cell interference.

Theorem 1. The capacity C of the system is:

C(x) = min

(

Crel(x), min
0≤s≤NR

(Cs(x))

)

(1)

with:

Crel(x) = x

(

NR
∑

s=1

As

Rrel,s

)−1

(2)

Cs(x) = (1− x)

(
∫

As

1

Rs(r)
dr

)−1

(3)

Furthermore, there exists a unique x∗ ∈ [0, 1] which maximizes the capacity, with C∗ the corresponding maximal

capacity:

x∗ =

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

+
(

∑NR

s=1
As

Rrel,s

)−1
(4)

C∗ =

(

∑NR

s=1
As

Rrel,s

)−1
(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

+
(

∑NR

s=1
As

Rrel,s

)−1
(5)

Proof: See appendix.

It is noted that this result applies regardless of the underlying packet dynamics. More precisely, consider two

scenarios:

1) Small files: When a user served by a RS arrives in the network, the file he wants to receive enters the BS to

RSs link and once the whole file has gone through that link, it enters the corresponding RS to user link and

is transmitted. This model is reasonable for small files.

2) Larger Files: In a more realistic setting, when a user served by a RS arrives in the network, the file he wants to

receive arrives as small packets which enter the BS to RSs link, possibly with delays between packets. Once

a packet has gone through the BS to RSs link it immediately enters the RS to user link. Here the file can be

“split” between the two successive links.

In both scenarios the input process is stationary ergodic, and the value of λE0
A[σ0] is the same. Namely λ and

E0
A[σ0] are different but their product remains the same. Hence the system capacity does not depend on the scenario

chosen.

C. Relay gain

We now introduce the concept of RS placement gain, and give a method to evaluate the resulting capacity

improvement. We assume that the signal attenuation per distance unit is smaller for the useful signal between the

BS and RSs than for interfering signals. This can be achieved by placing RSs high enough so that the propagation

between the BS and RSs is close to the line-of-sight case, while taking advantage of buildings to increase the

attenuation of interfering signals. Assume that the propagation loss at distance ‖r‖ is A
‖r‖ηr with 2 ≤ ηr ≤ η for the

useful signal between the BS and RSs, and A
‖r‖η for all other signals. The case ηr = 2 corresponds to line-of-sight

propagation between BS and RSs. We call η− ηr the relaying gain, and ηr = 2 gives gives an upper bound on the

achievable capacity by intelligent relay placement.



4

D. Numerical experiments

We now evaluate the influence of the system parameters on the performance using a classical model. The model

parameters are given in Table I, and Figure 1 represents the network layout. Interference from neighbouring cells is

taken into account. We now state the ergodic throughput Rs(r) calculation method in the OFDMA case. Assuming

that the fast-fading is a multiplicative random variable of mean 1, we have that:

Rs(r) = NRB

∫

R+

φ(SINRs(r)x)p(x)dx (6)

with NRB the number of resource blocks, φ - a link-level curve mapping instantaneous Signal to Interference plus

Noise Ratio (SINR) into data rate on a resource block, SINRs(r) - the mean SINR at r ∈ As and p(x) the

probability density function (p.d.f) of the fast-fading. In the Rayleigh case, p(x) = e−x. Similar models apply in

the TDMA and CDMA case (see for example [10], [11]). It is noted that we choose a large cell radius since [12]

had shown that relays are only beneficial in such a setting.

Model parameters

Cell layout Hexagonal

Antenna type Omnidirectional

Cell Radius 2km
Access technology OFDMA

Fast-fading model Rayleigh

NRB 10
Resource block size 180kHz
BS transmit power 46dBm
RS maximum transmit power 30dBm
Thermal noise −174dBm/Hz
Path loss model 128 + 37.6 log

10
(d) dB, d in km

File size 10Mbytes

TABLE I

MODEL PARAMETERS

Figure 2 and 3 show the capacity of the system and the optimal relay transmit power respectively as the number

of relays grows, with and without relaying gain. The case without relaying gain is denoted “bad planning” and

with relaying gain “good planning”. It is noted that the value of the optimal relay transmit power in the “bad

planning” case is 0mW for all number of relays (below the x-axis). It demonstrates that the impact of relaying gain

is fundamental since without relaying gain it is actually detrimental to deploy relays. With relaying gain however,

the system capacity increases sharply.

Figure 4 shows the impact of the relaying gain on the system capacity for a fixed number of relays (15 in this

case), and we can see that the capacity increases almost linearly in the relaying gain. This can be explained by

the fact that log2(1 + S‖r‖η−ηr) is close to log2(S)− (η − ηr) log2(‖r‖) when S‖r‖η−ηr is large. It shows that if

one is able to evaluate the relaying gain prior to deployment (by measuring the value of the path loss exponent in

candidate sites for relay placement), one can actually determine if relay deployment is beneficial and the expected

benefit. Furthermore the point where the two curves intersect represents the minimal relaying gain needed for any

benefit from relay deployment to appear.

III. OPTIMAL DYNAMIC RESOURCE ALLOCATION STRATEGY

We now turn to the dynamic case. The BS observes the current state of the network and decides whether to

activate the BS to RSs links or the stations to users links.

A. Infinite buffer case: stabilizing policy

We partition each As into N regions As,i , 1 ≤ i ≤ N , each associated with a different radio condition. We

call i-th traffic class in station s the users who arrive in As,i. The state of the system can then be described by a

vector S ∈ N(2NR+1)N , S = ((Ss,i)0≤s≤NR,1≤i≤N , (Srel,s,i)1≤s≤NR,1≤i≤N ). In the small files framework we count
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Fig. 1. Relay placement

the number of users present in the links, otherwise we count the number of packets. Hence Ss,i is the number of

users (packets respectively) of class i served by the station to user link in station s , and Srel,s,i , s ≥ 1 the number

of users (packets respectively) of class i served by the BS to RS s link. We write Rs,i the data rate of a user of

class i served by station s.

We first assume infinite buffer lengths and we want to find the policy that keeps the system stable whenever that

is possible. The problem is in fact a particular case of the constrained queuing systems considered by [13]. It has

been proven that such a policy exists and that it is a max-weight policy. We define the weights:

Ds = max
1≤i≤N

(Ss,iRs,i) , 0 ≤ s ≤ NR (7)

Ds,rel = max
1≤i≤N

((Srel,s,i − Ss,i)Rrel,s) , 1 ≤ s ≤ NR (8)

The max-weight policy is then:

• If
∑

1≤s≤NR
Ds,rel ≥

∑

0≤s≤NR
Ds : activate the BS to RS s∗ link with s∗ = argmax

1≤s≤RS

Ds,rel,

• Else: activate the stations to users links, and in each station s serve the class of users i∗s = argmax
i

ns,iRs,i

B. Finite buffer case: MDP formulation

We now assume that the system state S is restrained to S ⊂ N(2NR+1)N with S finite due to admission control

mechanisms. We formulate the problem as a Continuous Time Markov Decision Process (CTMDP) and optimize

Quality of Service (QoS) metrics such as blocking rate or file transfer time. We formulate the problem in the small

files framework since we want to solve the MDP iteratively, in order to keep the state space relatively small. The

learning approach of the next section however can handle large state spaces as will be demonstrated.

1) State and action spaces: We assume that each link has a maximal number of simultaneous active users.

S =
{

S|Srel,s,i ≤ Srel,s,i , 1 ≤ s ≤ NR , 1 ≤ i ≤ N

and Ss,i ≤ Ss,i , 0 ≤ s ≤ NR , 1 ≤ i ≤ N
}
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Fig. 2. System capacity as a function of the number of relays, for different planning strategies

We define A = {0, 1} the action space, with the convention:

• a = 0 : activate BS to RSs links and share them in a PS sharing manner

• a = 1 : activate stations to users links and share them in a PS sharing manner

2) Transition probabilities: Assuming that file size σ is exponentially distributed, the system is a CTMDP.

Transitions from S to S
′ given action a have the following intensities:

• Arrival of a user from class i in the BS: 1S(s
′)
∫

A0,i
λdr

• Arrival of a user from class i in the BS to RS s link: 1S(s
′)
∫

As,i
λdr

• Departure of a user from class i in station s: 1{1}(a)1S(s
′) Rs,iSs,i

E[σ]
∑

N
i=1

Ss,i

• Movement of a user of class i from BS to RS s link to RS s to users link: 1{0}(a)1S(s
′) Srel,s,iRrel,s

E[σ]
∑

N
i=1

∑NR
s=1 Srel,s,i

3) Average reward: We call policy a mapping S → D(A), with D(A) the set of probability distributions on A.

We write (S(t), a(t), r(t))t∈R+ a realisation of the CTMDP with S(t) the state, a(t) the action, and r(t) the reward

at time t respectively. We are interested in the average reward criterion of a policy P :

JS0
(P ) = lim

T→+∞

1

T
EP,S0

[
∫ T

0
r(t)

]

(9)

with EP,S0
the expectation with respect to the probability generated by P , starting at S0, which does not depend

on S0 if the system is ergodic under policy P .

4) Performance criteria: We consider two performance criteria: mean file transfer time and blocking rate

(considering admission control). For each performance criteria we can define a corresponding instantaneous reward

for each state-action pair, and finding the optimal policy for the resulting MDP will yield the best policy with

respect to the considered performance criteria.

To optimize the mean file transfer time, we define the reward in state S as the number of users divided by the

arrival rate
∑

N
i=1

(S0,i+
∑NR

s=1(Ss,i+Srel,s,i))∫
A
λdr

, and for any policy P that renders the system ergodic, JS0
(P ) is the mean

file transfer time in the system using Little’s law ([14]).

We define the blocking rate as the ratio between the mean number of blocked users and the mean number of users

accessing the system, once again assuming ergodicity. Given action a, let β(S, a) the sum of transition intensities
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Fig. 3. Optimal relay transmit power as a function of the number of relays, for different planning strategies

out of state S and b(S, a) the sum of the intensities of arrival or movements which would be blocked, then the

reward is defined as
b(S,a)
β(S,a) .

5) Optimal control and parametrization: Given the previous description, we associate a Discrete Time Markov

Decision Process (DTMDP) by uniformization and we derive the optimal policy using an iterative method, by the

method described in [15]. It is noted that the complexity of finding the optimal policy is exponential in the number of

relays, limiting the approach to small problems. In order to preserve scalability, we introduce a well-chosen family

of policies. For commodity of notation we will use the following indexing of S : (S1, · · · , Sk, · · · , S(2NR+1)N ) =

((Ss,i)0≤s≤NR,1≤i≤N , (Srel,s,i)1≤s≤NR,1≤i≤N ). For θ ∈ R(2NR+1)N we write < S, θ >=
∑(2NR+1)N

k=1 θkSk. To θ we

associate the deterministic weighted policy Pd,θ:

Pd,θ(S, 1) =

{

1 , < S, θ > ≥ 0

0 , < S, θ > < 0
(10)

Pd,θ(S, 0) = 1− Pd,θ(S, 1) (11)

It is noted that a deterministic weighted policy is essentially an hyperplane separating the state space in two

regions, each half-space corresponding to an action of A.

It is also noted that the max-weight policy is a deterministic weighted policy. We then compare the performance

of three policies: the optimal policy, the max-weight policy and the optimal deterministic weighted policy. The

optimal deterministic weighted policy is well defined since the set of deterministic policies is finite.

Figure 5 and 6 show the file transfer time and the block call rate for the three policies, for one relay, one traffic

class and a maximum of 10 users for all links. We can see that the max-weight policy is very close to the optimal

policy when we are concerned with the block call rate, which is natural since it attempts to ensure stability. In

the file transfer time case however, the optimal deterministic weighted policy is noticeably closer to the optimal

policy than the max-weight. The fact the max-weight scheduling possibly incurs long delays has been reported in

the literature. Hence based on those two results we can conclude that the set of deterministic weighted policies is

rich enough to restrain the search to this set, since with a high number of relays and/or traffic classes, finding the

optimal policy becomes prohibitively expensive.
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IV. LEARNING

We have demonstrated that the set of weighted policies is rich enough to represent a good trade-off between

performance and search complexity. We now move on to a model-free approach, and we assume no knowledge of

the transition intensities and rewards. We are interested in learning the best weighted policy, simply by observing

realisations of the Partially Observable Markov Decision Process (POMDP) (S(t), a(t), r(t))t∈N. The model can be

partially observed for various reasons. For example if user arrivals are correlated in time, the evolution of the system

after t depends on the user arrivals before t, and this information is not present in S(t). The method presented here

is valid without assuming Poisson arrivals or exponentially distributed file sizes.

A. Policy gradient approach

We use the approach introduced by [7] and extended to the average cost criteria in [8], [9]. It is noted that such

algorithms work with stochastic policies, for the cost to be differentiable with respect to the policy parameter.

We introduce stochastic weighted policy Ps,θ:

Ps,θ(S, 0) = 1− f(< S, θ >) (12)

Ps,θ(S, 1) = f(< S, θ >) (13)

with f(x) =
1

1− e−x
(14)

we are interested in finding the θ which minimizes the average cost JS0
(Ps,θ). The link with the policies introduced

in the previous section is that any deterministic weighted policy Pd,θ can be approximated arbitrarily well by a

stochastic weighted policy Ps,K θ

‖θ‖
, with K ∈ R+ arbitrarily large.
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Fig. 5. File transfer time as a function of the traffic for different control strategies

B. Convergence to a local optimum

We now show how to converge to a local optimum of the average cost. We differentiate the action probabilities:

∂ log(Ps,θ(S, 0))

∂θk
= −f(< S, θ >)Sk = −Ps,θ(S, 1)Sk (15)

∂ log(Ps,θ(S, 1))

∂θk
= (1− f(< S, θ >))Sk = Ps,θ(S, 0)Sk (16)

Using finiteness of S , and the fact that 0 < Ps,θ(S, a) < 1, a ∈ {0, 1},S ∈ S we have that:

• For every θ, the Markov chain generated by policy Ps,θ is ergodic, implying that JS0
(Ps,θ) is well-defined

and does not depend on S0

• max
a∈{0,1}

max
S∈S

∣

∣

∣

∂ log(Ps,θ(S,0))
∂θk

∣

∣

∣
< +∞, 1 ≤ k ≤ (2NR + 1)N

• max
a∈{0,1}

max
S∈S

r(S, a) < +∞ , with r(S, a) the reward given state S and action a

Given β ∈ (0, 1), and a realization of the POMDP (S(t), a(t), r(t))t∈N , we define the sequence of gradient estimates

and the eligibility traces (∆(t), z(t))t∈N by the following recursive equation:

z(0) = 0 , ∆(0) = 0 (17)

z(t+ 1) = βz(t) +∇θ log(Ps,θ(S(t), a(t))) (18)

∆(t+ 1) = ∆(t) +
1

t+ 1
[r(t+ 1)z(t+ 1)−∆(t)] (19)

Furthermore [8][Theorem 4] states that: ∆(t) →
t→+∞

∆∞(θ) almost surely and that the dot product between

∆∞(θ) and ∇θJ(θ) is positive. In other words, for a given θ, the limit of −∆(t) is a descent direction. We

consider Θ ⊂ R(2NR+1)N a compact and convex set, [.]+Θ the projection on Θ, (ǫn)n∈N a sequence of positive step
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Fig. 6. Block call rate as a function of the traffic for different control strategies

sizes (satisfying the Wolfe conditions) and we define θn by:

θ0 ∈ Θ (20)

θn+1 = [θn − ǫn∆∞(θ)]+Θ (21)

then we have that θn →
n→+∞

θ∞ with θ∞ a local minimum of J in Θ by a simple descent argument. θ∞ is not

necessarily unique if J or Θ are not convex.

Furthermore, since −∆∞(θ) is a descent direction, we have that the performance of the system improves

monotonically, which is a very interesting property for system implementation. This is in sharp contrast with

the traditional “learning phase” of learning algorithms such as Q-learning ([16]) when the average reward changes

rapidly.

The learning method converges to a locally optimum policy if {θn} converges to θ∞ a local optimum of the

cost. It is noted that convergence of the controller parameter θ implies convergence of policies.

C. Implementation issues: assumptions on traffic and scalability

It is noted that the learning method is valid regardless of the statistical assumptions on traffic. Namely the validity

of the policy gradient approach was shown by [8] even in the partially observable case.

It is noted that the algorithm is fully scalable when the number of relays increase since all the components of

the descent direction ∆∞(θ) are estimated from the same realization of the POMDP, incurring no additional costs

when NR or N increases. This is fundamental since some deployment scenarios include 30 RSs per BS.

D. Numerical experiments

We now evaluate the performance of the learning algorithm in the same setting as Section III. Figures 7 and 8

represent the evolution of the mean file transfer time and the controller parameters (θ1, θ2, θ3) respectively during

the learning period. One update of θ corresponds to 103 iterations of the underlying POMDP. As stated above, the

mean file transfer time decreases in an almost monotonic fashion. The small variations are a numerical artefact due

to the fact that the average reward is calculated on a finite number of iterations of the POMDP.
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V. CONCLUSION

We have considered the problem of self-organized relays in a cellular network. The optimal static resource sharing

between BS to RSs links and stations to users links has been derived in closed form using a queuing model. The

influence of key system parameters has been investigated, showing the importance of relaying gain. Dynamic

resource sharing has been considered using two approaches: stability for infinite buffers and blocking rate and file

transfer time in the presence of admission control. The optimal policy has been derived using a MDP approach,

which allowed us to introduce a well-chosen subset of the policy space as a form of expert knowledge. This expert

knowledge has then been used in a model-free approach in which the optimal parametrized controller is found by

observation and interaction with the system. Convergence to a local optimum has been demonstrated, and the fact

that the performance of the system improves monotonically, which is a key property for system implementation.

APPENDIX A

PROOF OF THEOREM 1

Proof: We first recall Loynes lemma for a G/G/1/First Come First Served (FCFS) queue: if (An, σn)n∈Z is the

stationary ergodic marked point process of arrival times and service requirements at a single server with service

rate 1, then the stability condition is:

λE0
A[σ0] < 1 (22)

with λ the intensity of A and E0
A the Palm expectation with respect to A. The reader can refer to [17] for the proof.

Furthermore, this remains valid for a G/G/1/PS queue since the workload process in the PS case is the same as in

the FCFS case.

This allows to write the capacity of the link between the BS and users:

C0(x) = (1− x)

(
∫

A0

1

R0(r)
dr

)−1

(23)
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Fig. 8. Controller parameters (θ1, θ2, θ3) during the learning process

and the capacity of the link between the BS and RSs:

Crel(x) = x

(

NR
∑

s=1

As

Rrel,s

)−1

(24)

Now assuming that the link between the BS and RSs is stable, its output process is stationary ergodic, and using

a flow conservation argument it has the same intensity as the input. The capacity of the link between RS s and its

users is then:

Cs(x) = (1− x)

(
∫

As

1

Rs(r)
dr

)−1

(25)

The stability of the system is equivalent to the stability of all queues, hence C(x) = min

(

Crel(x), min
0≤s≤NR

(Cs(x))

)

.

Furthermore x → Crel(x) is strictly increasing and x → min
0≤s≤NR

(Cs(x)) is strictly decreasing, hence the unique

optimal point x∗ is:

x∗ =

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr

)−1

+
(

∑NR

s=1
As

Rrel,s

)−1
(26)

Substitution of x∗ in the capacity formula yields C∗ which concludes the demonstration.
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