# Self-Optimizing Strategies for Interference Coordination in OFDMA Networks

R. Combes<sup>1</sup> Z. Altman<sup>1</sup> M. Haddad<sup>2</sup> E. Altman<sup>2</sup>

<sup>1</sup>Orange Labs

<sup>2</sup>INRIA Sophia-Antipolis

IEEE ICC 2011, Workshop on Planning and Optimization of Wireless Communication Networks

#### Outline

#### 1 Background and Related work

- 2 The model
- 3 Proposed algorithm

#### 4 Simulation

#### 5 Conclusion



# Background and motivation

Self-Organizing Networks (SON): embedding of autonomic features into networks, actively discussed by standardisation bodies:

- self-configuration
- self-optimization
- self-healing
- Inter-Cell Interference Coordination (ICIC) is one of the major SON use cases
- A SON mechanism should be:
  - distributed
  - computationally light
  - delay-tolerant
- In this work we study various light-weight distributed ICIC mechanisms, including complexity/performance trade-off and engineering guidelines

#### Related work

The major SON use cases currently discussed by researchers and standardisation bodies are:

- ICIC (<sup>1</sup>,<sup>2</sup>)
- Cell outage management<sup>3</sup>
- Coverage-capacity optimization<sup>4</sup>
- Energy savings and green networks<sup>5</sup>

<sup>1</sup>A.L. Stolyar and H. Viswanathan. "Self-Organizing Dynamic Fractional Frequency Reuse for Best-Effort Traffic through Distributed Inter-Cell Coordination". In: *INFOCOM*. 2009.

<sup>2</sup>G. Wunder et al. "Self-organizing distributed inter-cell beam coordination in cellular networks with best effort traffic". In: *WiOpt.* 2010.

<sup>3</sup>M. Amirijoo et al. "Cell outage management in LTE networks". In: *ISWCS*. 2009.

<sup>4</sup>R. Combes, Z. Altman, and E. Altman. "Scheduling gain for Frequency-selective Rayleigh-Fading channels with application to Self-Organizing packet scheduling". In: *Performance Evaluation* (2011).

#### The model

We consider an OFDMA-based network under full reuse, in the downlink scenario

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- Available bandwidth is divided into N<sub>p</sub> RB (resource blocks), and RBs are grouped into N<sub>b</sub> sub-bands
- Each base-station adjusts it's transmit power on each sub-band, and can exchange information with its neighbours using an interface (X2 interface in LTE)

## The model:ICIC strategies

#### Three ICIC schemes are considered:

- Power control:  $N_b = 1$  sub-band, continuous power levels
- Fractional load:  $N_b > 1$ , discrete power levels  $\{P_{min}, P_{max}\}$
- Fractional frequency reuse: N<sub>b</sub> > 1, continuous power levels

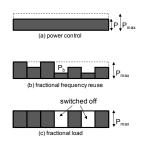



Figure: ICIC schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

#### The model:SINR and data rates calculation

The mean SINR on a RB is calculated by summing the interference from neighbouring base stations:

$$S_{s,i}^{(b)} = \frac{h_{s \to i} P_s^{(b)}}{N_0^2 + \sum_{s' \in \mathcal{N}_s} h_{s' \to i} P_{s'}^{(b)}}$$
(1)

The corresponding user peak data rate on a RB is obtained by integration over the fast-fading distribution (ignoring fading in the interfering signals)

$$\Psi(S_{s,i}^{(b)}) = N_{PRB} \int_0^{+\infty} \Phi(x S_{s,i}^{(b)}) e^{-x} dx$$
 (2)

 Ψ allows to calculate the data rate of a user for both round-robin and proportional fair (opportunistic) scheduler

$$r_{i} = \frac{1}{N_{u}(s)} \sum_{b=1}^{N_{b}} \Psi\left(S_{s,i}^{(b)}\right) \tag{3}$$

## The model: traffic model and ICIC

- Users arrive in the network at random locations and instants, to receive a file of given size.
- Users leave the network upon service completion
- We want to design an ICIC mechanism to maximize metrics such as: capacity region, blocking rate or file transfer time
- Given dynamical arrivals and departures, the problem is a large-dimensional MDP, which is too complex for a large number of base stations
- We use a greedy approach: for each configuration of users (state) we maximize a well-chosen function of the user data rates

• We define the utility of a base station using  $\alpha$ -fairness:

$$U_{s} = \begin{cases} \sum_{i=1}^{N_{u}(s)} \log(d+r_{i}) & , \alpha = 1\\ \sum_{i=1}^{N_{u}(s)} \frac{(d+r_{i})^{1-\alpha}}{1-\alpha} & , \alpha \neq 1 \end{cases}$$
(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽へぐ

- Utility of the network is the sum of the base station utilities:  $U = \sum_{s} U_{s}$
- We will show that there exists an optimal  $\alpha$

### Proposed algorithm: continuous power levels

- Finding the global optimum of U for a general user configuration is generally computationally hard, so we settle for local optima and heuristics
- Using previous calculations, \$\vec U\$ can be calculated in closed form
- For continuous power levels, we use a projected gradient descent, which can be implemented in a distributed way

$$\pi_{s}(\mathbf{0}) \in \mathcal{P}_{s}, \ \pi_{s}(t+1) = \left[\pi_{s}(t) + \mu \vec{\nabla}_{s} U(\pi_{s}(t))\right]^{+}$$
 (6)

(日) (日) (日) (日) (日) (日) (日) (日)

## Proposed algorithm: discrete power levels

For discrete power levels we introduce a greedy heuristic to choose a sub-band to "turn off" and another to "turn on", given a constraint on the number of "off" bands.

$$\begin{split} b_{off} &= \underset{b,(\pi_s(t))_b = P_{max}}{\arg \max} (\vec{\nabla}_s U(\pi_s(t)))_b \\ b_{on} &= \underset{b,(\pi_s(t))_b = P_{min}}{\arg \max} (\vec{\nabla}_s U(\pi_s(t)))_b \\ \text{Turn on } b_{on} \text{ and turn off } b_{off} \text{ if it is admissible} \\ \text{and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{on}} > 0 \text{ and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{off}} < 0 \\ \text{Else turn on } b_{on} \text{ if it is admissible and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{off}} > 0 \\ \text{Else turn off } b_{off} \text{ if it is admissible and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{off}} < 0 \\ \text{Else turn off } b_{off} \text{ if it is admissible and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{off}} < 0 \\ \text{Else turn off } b_{off} \text{ if it is admissible and } (\vec{\nabla}_s U(\pi_s(t)))_{b_{off}} < 0 \\ \text{Else keep the same power allocation} \end{split}$$

Table: fractional load algorithm

# Complexity, signalling load and delay

- All power updates are done using closed-form formulas so the computational effort is very small
- For each power update, a base station has to exchange the corresponding derivatives of U with it's neighbours through an interface (X2 interface in LTE)
- The signalling load is proportional to the number of bands N<sub>b</sub> times the number of neighbours, in practice less than 1 kbps
- Power updates occur every 1s, and the interface delay is expected to be below 50ms, hence delay is not critical either

### Simulation

The efficiency of the proposed mechanism is assessed using a network simulator:

- Users arrive according to a Poisson process
- Channel fast-fading and opportunistic scheduling are taken into account (proportional fair)
- Distance-dependant path-loss and shadowing are taken into account
- Performance/complexity of the ICIC mechanisms trade-off is assessed
- **The optimal value of**  $\alpha$  is found numerically

#### Simulation results

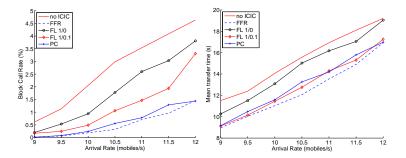



Figure: Comparison of<br/>blocking rates for different ICIC<br/>strategiesFigure: Comparison of mean<br/>file transfer time for different<br/>ICIC strategies

<ロ> (四) (四) (三) (三) (三) (三)

## Simulation results(cont'd)

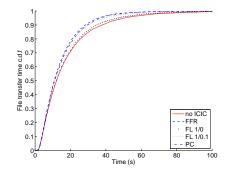



Figure: c.d.f of file transfer time

## Simulation results(cont'd)

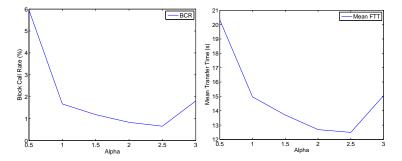



Figure: Blocking rate for different values of  $\alpha$ 

Figure: Mean file transfer time for different values of  $\alpha$ 

・ロン ・聞 と ・ ヨ と ・ ヨ と

## Conclusion

- Trade-off between performance and complexity of light-weight ICIC schemes have been assessed at the flow-level
- ICIC schemes effectively reduce congestion and bring noticeable improvement of QoS metrics such as blocking rate and file transfer time

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

It has been shown that minimizing the potential delay (setting α = 2) gives the best performance