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Abstract

This paper investigates packet scheduling in the context of Self-Optimizing Networks, and demonstrates how

to improve coverage dynamically by adjusting the scheduling strategy. We focus on α-fair schedulers, and we

provide methods for calculating the scheduling gain, including several closed form formulas. Scheduling gain is

analyzed for different fading models, with a particular focus on the frequency-selective channel. We then propose a

coverage-capacity self-optimization algorithm based on α-fair schedulers. A use case illustrates the implementation

of the algorithm and simulation results show that important coverage gains are achieved at the expense of very little

computing power. 1
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I. INTRODUCTION

Next Generation (NG) Radio Access Networks (RAN) encompassing Beyond 3G (B3G) and 4G networks target

ambitious performance and Quality of Service (QoS) objectives. Evolutions in NG RANs are geared by new

applications and services with increasing demand for bandwidth and for high QoS while keeping cost and complexity

as low as possible. In this context, Self-Organizing Networks (SON) is commonly seen as a key lever to further

increase network performance, to simplify its management and to reduce its cost of operation. Main standardization

bodies such as 3rd Generation Partnership Project (3GPP) and IEEE have picked up this topic, and SON mechanisms

encompassing self-configuration, self-optimization and self-healing are expected to become widely commercially

available with the introduction of 4G networks (e.g. LTE Advanced [1] and WiMax 802.16m).

The academic and industrial communities have defined requirements, challenges and many use cases for SON

in B3G and 4G RANs (see for example [2], [3], [4]). Self-optimizing network is a SON mechanism that aims

at adapting the network to variations in traffic, to propagation conditions and to modification in the operating

conditions such as the introduction of a new service. Self-optimizing network has been defined in [1] as “the

process where User Equipment (UE) and enhanced eNode B (eNB) measurements and performance measurements

are used to auto-tune the network ”. Ref. [3] is probably the most complete document providing the requirements

and use cases for SON in general and self-optimizing network in particular. Among the self-optimizing use cases

are: interference coordination, handover, and Radio Resource Management (RRM) functions (e.g admission control,

packet scheduling, load balancing, link level retransmission scheme optimization etc). An important SON use case

for network operators is the outage detection and compensation ([3], [5]).

This paper investigates Packet Scheduling (PS) in the context of self-optimizing networks. We believe that a packet

scheduler can serve as a central tool for designing efficient SON mechanisms in NG RANs. The packet scheduler
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is used as a stand alone SON entity as described in this work. However, future research in SON should address

the difficult question of how to coordinate different SON entities such as mobility and/or Inter-Cell Interference

Coordination (ICIC) with the mechanism we describe here.

The first challenge we face is to model the PS in time scales in which the self-optimization processes operate

which could vary from a hundred milliseconds to tens of seconds and more. The packet scheduling operates on a

time scale of a millisecond to react to fast fading. Hence one needs to quantify the scheduling gain which depends

on the current traffic distribution, i.e. the number of mobiles and their Signal to Interference plus Noise (SINR) at

a long time scale. Furthermore, the computation of the scheduling gain should be performed very rapidly to allow

the incorporation of the scheduler in a network simulator used to design the self-optimization functionality.

We focus on the family of α-fair schedulers introduced by [6] which includes well-studied schedulers such as

Proportional Fair (PF), Max Throughput (MTP) and Max-Min Fair (MMF) schedulers. A general framework for

calculating a scheduling gain has been proposed in [7] for α = 1 and is generalized to α > 0 in this work. For

certain particular cases, namely MMF and MTP, we provide closed form expressions for the scheduling gain. These

expressions allow us to understand what kind of scheduling gain can be achieved in limiting cases for α and their

potential use for improving QoS.

First results have been reported in our previous contribution [8]. In this paper we broaden the analysis of

scheduling gain computation to frequency selective Rayleigh channels.

Our first contribution is to demonstrate the application of the statistical-based scheduler gain calculation to the

family of α-fair schedulers that will be used in the self-optimization process. It is noted that deriving the scheduling

gain is done without considering the Rayleigh fading time series obtained by the Jakes Model ([9], [10]). The reason

is relatively simple: if the scheduling interval is large enough, the channel states at different scheduling times are

independent (see II-B), which makes the calculation a lot simpler.

The second contribution of this work is to compare different fading models and their impact on the gain of the PF

scheduler, and to provide a closed-form formula. Since we are considering a wide-band system, a frequency-selective

channel model is more appropriate than a flat-fading model, and we show that the impact of frequency-selectivity on

scheduling gain is significant. Intuitively, this is because the fading distribution of the frequency-selective channel

has smaller variance than the flat-fading channel, resulting in smaller diversity gains. A closed-form formula is

given for the scheduling gain of a PF scheduler on a frequency-selective Rayleigh fading channel, generalizing the

flat-fading case.

The third contribution of the paper is to derive a coverage-capacity self-optimization scheme based on the family

of α-fair schedulers. We show how to adjust the scheduling strategy dynamically to maximize the cell coverage while

minimizing the corresponding capacity losses measured in terms of global cell throughput. The self-optimization

scheme uses a strategy inspired by the Multi-Armed-Bandit (MAB) problem to learn the optimal α dynamically.

The proposed approach is simple and computationally efficient and can serve as basis for real implementation.

The paper is organized as follows: Section II provides the definition of the α-fair scheduler as a maximization

problem, and of the model chosen for fast-fading. We state an explicit scheduling rule and it’s heuristic justification.

Section III demonstrates rigorously that this scheduling rule solves the maximization problem, using stochastic

approximation techniques. Section IV deals with how to calculate the scheduling gain, with several closed form

formulas for particular values of α and a numerical method for the remaining cases. In section V we examine several

simulation results to show the behavior of the scheduling gain when α varies, and how we might take advantage of it

to manage fairness dynamically. Section VI compares the scheduling gain for different fading models, and provides

a closed-form formula for the PF scheduling gain. Section VII describes how the computation of the scheduler gain

can be used for capacity-coverage self-optimization in an environment with varying traffic and provides numerical

results. Section VIII concludes the paper.

II. MODEL AND ASSUMPTIONS

A. α-fair scheduling

1) Definition: We consider a cell with N users with no mobility, and we adopt a full buffer traffic model. We are

considering the downlink scheduling, where the scheduler picks a user for transmission at regular time intervals.

A scheduling policy P is defined by the choice of a user for every scheduling instant (Ptm)m∈N, namely Ptm = i

means that at time tm, user i will be selected for transmission. We define ri,tm as the instantaneous throughput of
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user i at time tm, and ri,tm - the mean throughput allocated to user i during the time interval [t0, tm]. We assume

perfect channel knowledge, that is to say that at tm, the scheduler knows ri,tm ∀i and can make use of it to choose

the scheduled user. Let ǫ > 0 denote a small averaging parameter, and define ri,tm as in [11] by the following

recursive equation:

ri,tm+1
= (1− ǫ)ri,tm + ǫδPtm+1

,iri,tm+1
(1)

where δ denotes Kronecker’s delta.

This definition for the mean allocated throughput is more relevant to reflect the QoS perceived by a user than

using an arithmetic mean (which would be replacing ǫ in (1) by 1
m

) because it induces a ”decay” of past observed

values. ǫ is the parameter which controls the size of the averaging window, and is related to the service we are

considering. Namely, for applications such as File Transfer Protocol (FTP), the average bitrate allocated to a user

during the file transfer time, typically a few seconds, is a relevant performance indicator. For applications such as

voice however, the perceived quality is related to the average bitrate on a much smaller time scale, e.g 100ms,

because of the play-out buffer size. Hence the value of ǫ for FTP traffic shall be smaller than for voice traffic.

If we assume that ri,t0 = 0 ∀i, equation (1) can also be written:

ri,tm = ǫ

m
∑

j=0

(1− ǫ)m−jδPtj
,iri,tj (2)

Furthermore, if ri,tm has a limit when m → +∞, ǫ → 0+ , we then denote by ri,+∞ this limit. We also make

the assumption that (ri,tm)m∈N is an i.i.d sequence for all i, and that (ri,tm)m∈N is independent of (rk,tm)m∈N,k 6=i.

As introduced in [6], the α-fair scheduler for α ∈ [0,+∞) is the policy that maximizes the following utility

function, given the time interval [t0, tM ]:

U =



























N
∑

i=1

log(d+ ri,tM ) , α = 1

N
∑

i=1

(ri,tM + d)1−α

1− α
, α 6= 1

(3)

where d > 0 can be chosen as small as desired and is only present to avoid problematic behavior near 0. Intuitively,

increasing α shall result in fairer allocations, namely users with bad channel conditions get more resources, while

decreasing α shall result in increasing the global cell throughput
∑N

i=1 ri,tM . However, the notion of measuring

fairness is somehow unclear. [12] gives a formal justification to this and shows that the α-fair allocation is in fact

the allocation that maximizes a fairness measure while preserving Pareto optimality. Namely, let x ∈ R
N denote an

allocation, then the α-fair allocation maximizes the fairness measure fα(x) = sign(1−α)

[

∑N
i=1

(

xi∑
N

j=1 xj

)1−α
] 1

α

,

while being Pareto optimal.

2) Allocation: We now give a heuristic justification for the scheduling rule, and a rigorous analysis is given

in Section III. We assume that the allocation has been done for [t0, tM ] and we want to decide which user to

schedule at tM+1. Let (∆U)i denote the variation of utility if user i is chosen for transmitting at tM+1, which we

approximate with a first-order Taylor expansion. If α = 1, the increase in utility for user i is:

log
(

(1− ǫ)ri,tM + ǫri,tM+1
+ d
)

− log(ri,tM + d)

= ǫ
ri,tM+1

− ri,tM
ri,tM + d

+ o(ǫ) (4)

The decrease for the other users is:

log ((1− ǫ)ri,tM )− log(ri,tM ) = −ǫ
ri,tM

ri,tM + d
+ o(ǫ) (5)

We add (4) and (5):

(∆U)i = ǫ

[

ri,tM+1

ri,tM + d
−

N
∑

k=1

rk,tM
rk,tM + d

]

+ o(ǫ) (6)
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If α 6= 1:

1

1− α

[

(

(1− ǫ)ri,tM + ǫri,tM+1
+ d
)1−α− (ri,tM + d)1−α

]

= ǫ
ri,tM+1

− ri,tM
(ri,tM + d)α

+ o(ǫ) (7)

and:

1

1− α

[

((1− ǫ)ri,tM + d)1−α − (ri,tM + d)1−α
]

= −ǫ
ri,tM

(ri,tM + d)α
+ o(ǫ) (8)

We add (7) and (8):

(∆U)i = ǫ

[

ri,tM+1

(ri,tM + d)α
−

N
∑

k=1

rk,tM
(rk,tM + d)α

]

+ o(ǫ) (9)

In both cases, for small ǫ, the optimal choice is:

i∗ = arg max
0≤i≤N

ri,tM+1

(ri,tM + d)α
(10)

α = 1 corresponds to a PF scheduler, and α = 0 to a MTP scheduler.

B. Channel Model

Let ci,tm be the instantaneous channel quality for user i at time tm, that is to say the product of path loss,

shadowing and fast fading. We will assume that ri,tm = Φ(ci,tm). Φ is a function that maps channel quality into

bit-rate, and is given in the form of a quality table obtained from a link level simulator. Φ captures the effect

of physical layer mechanisms such as modulation, coding and Hybrid Automatic Repeat reQuest (HARQ). This

function therefore depends on the technology we are considering, which is Time Division Multiple Access (TDMA)

technology such as High Speed Downlink Packet Access (HSDPA). It is noted that since HARQ is considered, Φ
is continuous and strictly increasing.

Let us denote by Si the average SINR for user i, which captures the effect of path loss, shadowing and interference

with neighboring cells. We choose a time scale that is short enough for all those effects to be constant, but long

enough to capture a scheduling gain, and the only random parameter is the fast fading ξ.

The channel fading is described by a Rayleigh model, and we use the assumption from [13] that the number of

interfering signals is sufficiently large so that the fading processes between users and neighboring cells base stations

can be ignored for the calculation of Si. We will use this assumption for the whole paper, including section VI. The

squared magnitude of the received signal is exponentially distributed (see [14][Page 36]), hence the instantaneous

channel quality can then be written as:

ci,tm = Siξi,tm , ξi,tm ≡ Exponential(1) (11)

Furthermore, random variables (ξi,tm)0≤i≤N,m∈N are independent. Independence between users comes from the

Rayleigh fading model, and independence between different instants is verified if tm+1 − tm is larger than the

channel coherence time. More precisely, as stated in [9], the autocorrelation of the channel fading for a single user

between t and t+ τ is J0(ωMτ), where J0 is the 0-th order Bessel function and ωM -the maximum Doppler shift,

and |J0(x)| vanishes as x grows.

III. CONVERGENCE ANALYSIS

In this section we give a convergence analysis of α-fair scheduling, using the Ordinary Differential Equation

(ODE) technique which has been used previously in [15] and [11] to show the convergence of the PF scheduler.
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A. Stochastic approximation

We start by giving two results from stochastic approximation theory, which links the behavior of stochastic iterative

algorithms with limit sets of a certain ODE. We consider θ ∈ R
n, (a, b) ∈ R

n ×R
n, H = {x ∈ R

n|ai ≤ xi ≤ bi},

ΠH [x] = argmin
y∈H

||x − y||, step sizes ǫk > 0 and random variables Yk(θ) ∈ R
n. We assume that the Yk are

independent and identically distributed (i.i.d) with E[Yk(θ)] = g(θ) and supθ E[Yk(θ)
2] < +∞. We define the

sequence θk using the following algorithm:

θk+1 = ΠH [θk + ǫkYk] (12)

Two choices for the step sizes are possible:

(Pi) ǫk > 0 ,
∑+∞

k≥1 ǫk = +∞ ,
∑+∞

k≥1 ǫ
2
k < +∞ which is adequate when the environment is stationary, and

ensures a strong form of convergence as shown below

(Pii) ǫk = ǫ > 0 where ǫ is a small constant, which controls the size of the averaging window, as explained in

the previous section

We will also assume that g is continuous, that the mean ODE
.

θ = g(θ), θ(0) = θ0 has a unique solution defined

on R
+ for all θ0, and that all solutions converge to θ∗ in the interior of H . Before stating the theorems it shall

be noted that the assumptions we have made are extremely restrictive in order to make the theorems statements

less technical, and that a lot of other cases can be handled by stochastic approximation theory, including non i.i.d

variables, cases in which the mean ODE does not converge to a single point and when it is replaced by a differential

inclusion.

The asymptotic behavior of (12) is given by the following theorems:

Theorem 1. If we assume (Pi) then θk →
k→+∞

θ∗ almost surely.

Theorem 2. If we assume (Pii) then there exists a constant K1 > 0 such that lim sup
k→+∞

E[||θk − θ∗||2] 12 ≤ K1
√
ǫ

The first theorem is implied by [15] (Theorem 2.1, page 127) and the second is [16] (Theorem 3, Page 106).

Intuitively, the second theorem states that we can always find an ǫ so that the accumulation points of the sequence

θk are almost all the time in an arbitrarily small neighborhood of the limit point θ∗, giving a form of convergence

in distribution (or weak convergence).

B. Application to the α-fair scheduler, α > 0

We will now use the previous results to show that the α-fair scheduler defined by (10) converges to a unique

limit, and that it maximizes the utility function (3). We work with α > 0 fixed, and the case α = 0 will be studied

separately.

We use the following notation: (x, y) ∈ R
n × R

n, x ≤ y ⇔ xi ≤ yi, 1 ≤ i ≤ n. The scheduling rule (10) has

the form (12), with θk the mean throughput at time k, ǫ a small constant, and g(θ) = h(θ)− θ, where h is defined

by: h(θ) = E[rIargmax( r

(d+θ)α
)] with (Ii)k = δ(i, k) , 1 ≤ k ≤ n. We will assume that r is always positive with

E(r) = r < +∞ and E(r2) < +∞ .We also assume that r has a density with respect to the Lebesgue measure on

(R+)n, and that its components are independent. It shall be noted that those assumptions are not very restrictive

and are satisfied for Rayleigh and Rice fading models.

1) Properties of h: We have that h is positive and bounded, since h ≤ r.

We have that if h(θ1) = θ1, θ1 ≤ θ2 and h(θ2) = θ2 then θ1 = θ2, since all components of h cannot increase

when all components of θ increase.

We are going to prove that h is also Lipschitz continuous. We first assume that ||θ|| < 1, let Pi,j,θ1,θ2 be the

following quantity:

Pi,j,θ1,θ2 = P

[{

ri

(d+ θ1i
)α

≥ rj

(d+ θ1j
)α

}

∪
{

ri

(d+ θ2i
)α

≤ rj

(d+ θ2j
)α

}]
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which we can rewrite:

Pi,j,θ1,θ2 = P

[

rj(
d+ θ1i

d+ θ1j

)α ≤ ri ≤ rj(
d+ θ2i

d+ θ2j

)α
]

(13)

Let Fri(x) = P[ri ≤ x],

Pi,j,θ1,θ2 = E

[

Fri(rj(
d+ θ1i

d+ θ1j

)α)− Fri(rj(
d+ θ2i

d+ θ2j

)α)

]

(14)

We have assumed ||θ|| ≤ 1, so we have :

|(d+ θ1i

d+ θ1j

)α − (
d+ θ2i

d+ θ2j

)α| ≤ Kα||θ1 − θ2|| (15)

Fri is Lipschitz since we have assumed ri to have a density with respect to the Lebesgue measure, so for a certain

constant KF :

Pi,j,θ1,θ2 ≤ E[KαKF ||θ1 − θ2||rj ] = KαKF ||θ1 − θ2||rj (16)

We now apply Cauchy-Schwartz inequality to evaluate the variation of h

||h(θ1)− h(θ2)|| ≤E[||r||2]E[||Iargmax( r

(d+θ1)α
)

− Iargmax( r

(d+θ2)α
)||2] (17)

The first term is finite since we have assumed finite variance for r and the second term can be evaluated by:

E[||Iargmax( r

(d+θ1)α
) − Iargmax( r

(d+θ2)α
)||2] ≤ 4

∑

i 6=j

Pi,j,θ1,θ2 (18)

Combining (17) and (18) we conclude that there exists Ch constant so that:

||h(θ1)− h(θ2)|| ≤ Ch||θ1 − θ2|| (19)

We therefore have proved that h is Lipschitz for ||θ|| ≤ 1. Let K2 ≥ 1, we have that :

Iargmax( r

(d+θ)α
) = Iargmax( r

( d+θ
K2

)α
) (20)

and therefore:

h(θ) = h(
θ + d

K2
− d) (21)

We combine this with (19), with K2 large enough:

||h(θ1)− h(θ2)|| = ||h(θ1 + d

K2
− d)− h(

θ2 + d

K2
− d)||

≤ Ch

K2
||θ1 − θ2||

≤ Ch||θ1 − θ2||

So we have proved that h is globally Lipschitz continuous.

2) Existence of a solution to the ODE: We now have to prove that the ODE has solutions on R
+. We have

that h is Lipschitz, so the Picard-Lindelof theorem assures us that it has a unique local solution. Furthermore, we

know that there exists a unique maximal solution defined on some maximal interval [0, t0[. h is bounded by r so

θ(t) ≤ θ(0) + tr, therefore t0 = +∞, or else the solution is not maximal.
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3) Monotone dynamical systems: We first state some results from the theory of monotone dynamical systems,

and the reader can refer to [17] for their proofs.

We denote by Γt(x), x ∈ (R+)n the value at time t of the solution to the ODE starting in x. We define the orbit

of x by O(x) = {Γt(x)|t ≥ 0} and the limit set of x by ω(x) = ∩t≥0 ∪s≥t Γs(x). x is called an equilibrium point

if O(x) = x, and we denote by E the set of equilibrium points. x is called a quasi-convergent point if ω(x) ⊂ E

and we denote by Q the set of quasi-convergent points. If x ≤ y ⇒ Γt(x) ≤ Γt(y) ∀(x, y) ∈ (R+)n × (R+)n

∀t ∈ R
+, then we say that Γ is monotone. We have the following theorems:

Theorem 3. If Γ is monotone and x < y then either:

(i) ω(x) < ω(y) , or

(ii) ω(x) = ω(y) ⊂ E

Theorem 4. If Γ is monotone then Q is dense in (R+)n

We now need to show that those results can be applied to the ODE we are considering, which is proved by the

following comparison theorem:

Theorem 5. We consider the ODE
.
x= g(x). Let g : (R+)n → R

n, verifying:

(i) g is continuous

(ii) The solution to the ODE is unique for every initial condition

(iii) x ≤ y and xi = yi ⇒ gi(x) ≤ gi(y)
(iv) For T ≥ 0, (x, δ) ∈ (R+)n × (R+)n, we have that: sup0≤t≤T ||Γt(x)− Γt(x+ δ)|| →

δ→0
0

Then Γ is monotone

Condition (iii) is often called the Kamke condition.

Let us now show that the ODE we are considering satisfies those conditions. (i) and (ii) have been proved

previously. (iii) comes from the fact that x → 1
(d+x)α is decreasing. To prove (iv), let T > 0, since h is Lipschitz

we can apply Gronwall’s lemma:

||Γt(x)− Γt(x+ δ)|| ≤ ||δ||eK3t (22)

for a certain constant K3. We then have that:

sup
0≤t≤T

||Γt(x)− Γt(x+ δ)|| ≤ ||δ||eK3T →
δ→0

0 (23)

So the conditions of the previous theorem are valid.

4) Convergence for θ(0) = 0 : By noticing that g(0) > 0, the following theorem proves that the solution starting

at 0 converges to a certain θ∗.

Theorem 6. If the ODE verifies the Kamke condition then any solution starting at x with g(x) > 0 converges to

an equilibrium point.

Let us now show that all solutions converge to the same limit.

We have proved that ω(0) = {θ∗}. Let x > 0 be an arbitrary initial condition, and x1 ≥ x with x1 ∈ Q since Q

is dense in (R+)n. We know that ω(x1) ⊂ E since x1 ∈ Q, let us assume that ω(0) < ω(x1). Let x2 ∈ ω(x1), we

have that h(x2) = 0 and x2 > θ∗, which contradicts (III-B1). So ω(x1) = ω(0) = {θ∗}, and finally ω(x) = {θ∗}
∀x ≤ 0, in other words all solutions converge to θ∗.

5) Optimality: Finally, we have to prove that the scheduling strategy is optimal, namely that any other scheduling

strategy achieves lower utility.

We first differentiate the utility function:

.

U (θ(t)) =

n
∑

i=1

hi(θ(t))− θi(t)

(d+ θi(t))α
(24)

We are going to prove that θ∗ is a local maximum of U on the set of all achievable throughputs. Let f :
(R+)n × (R+)n → {1, ..., n} a new allocation rule, by replacing h by it’s definition we have that:

E[

n
∑

i=1

ri(If(θ,r))i

(d+ θi(t))α
] ≤ E[

n
∑

i=1

ri(Iargmax( r

(d+θ)α
))i

(d+ θi(t))α
]. (25)
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Let θf (t) and θ(t) the trajectories implied by the new and the usual allocation rules respectively, both starting

at θ∗. By combining (24) and (25) at t = 0 we have that:
.

U (θf (t))|t=0 ≤
.

U (θ(t))|t=0 ≤ 0 (26)

Therefore θ∗ is a local maximum of U on the set of all achievable throughputs.

Now consider θm achievable and such that U(θm) > U(θ∗). There is a certain allocation policy f such that

θm = E[rIf(r)]. Starting at θ∗ and using the allocation f gives the ODE
.

θ= θm − θ, the solution being θ(t) =
e−tθ∗ + (1 − e−t)θm. Since α > 0, U is strictly concave, and it must be strictly increasing at the beginning of

this path, which contradicts the fact that θ∗ is a local maximum. We therefore have proved that the scheduling rule

achieves optimal utility.

C. Application to the α-fair scheduler, α = 0

The case α = 0 is a bit different since U is linear, and not strictly concave. However the proof is a lot simpler

since the scheduling strategy does not depend on the mean throughput. The ODE is
.

θ= E[rIargmax(r)] − θ, and

the solution is θ(t) = e−tθ0 + (1 − e−t)E[rIargmax(r)], which converges to an unique limit. It shall be noted that

the limit is unique because P[ri = rj , i 6= j] = 0. If P[ri = rj , i 6= j] > 0 it might not be the case, for example

consider the case where all the ri are constant and equal to 1, any point in the simplex is a limit throughput. It

is also easy to see that since we have assumed independence of the channel between two scheduling instants and

that U is linear, the policy that chooses the user with the best channel also maximizes U over the set of achievable

throughputs.

IV. SCHEDULING GAIN

A. General expression

Let ri,+∞,α denote the mean limit throughput allocated to user i by an α-fair scheduler, and ri,+∞,RR the same

quantity for a Round Robin (RR) scheduler. It is noted that ri,+∞,α is well-defined according to the convergence

analysis done in Section III. We use the RR scheduler as a reference, and we want to calculate the scheduling gain

of an α-fair scheduler Gα = ri,+∞,α

ri,+∞,RR
.

For a given α, the scheduling strategy (10) converges to a unique limit θ∗ with h(θ∗) = θ∗, and combining this

with the channel model, yields the following integral equation, with d → 0+:

ri,+∞,α =

∫ +∞

0
Φ(x)P

[

Φ(x)

(ri,+∞,α + d)α
≥ max

k 6=i

(

Φ(Skξk)

(rk,+∞,α + d)α

)]

e
−x

Si

Si
dx (27)

It is important to notice that this formula in its present form does not enable us to calculate the scheduling gain,

since we need to know the value of rk,+∞,α ∀k. We will now show some particular cases where analytic formulas

exist, and give a numerical method for other cases.

B. RR

Let LΦ denote the Laplace transform of Φ, the RR scheduler chooses a given user with probability 1
N

, which

gives:

ri,+∞,RR =
1

N

∫ +∞

0

Φ(x)

Si
e

−x

Si dx

=
1

NSi
LΦ

(

1

Si

) (28)
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C. PF

Results for the PF case (α = 1) are given in [13]:

ri,+∞,1 =
1

Si

N−1
∑

k=0

(

N − 1

k

)

(−1)kLΦ

(

k + 1

Si

)

(29)

In particular, if Φ is a linear function we have the simple expression [7]:

Gi,1 =

∑N−1
k=0

(

N−1
k

)

(−1)k 1
Si

S2
i

(k+1)2

Si
=

N
∑

k=1

1

k
(30)

which is asymptotically equivalent to log(N).

D. MTP

Let us examine the case of a MTP, that is α = 0. The probability of choosing user i is the probability that he

has the best channel quality:

P [x > maxk 6=i(ck,t)] =
∏

k 6=i

(1− e
− x

Si ) (31)

The throughput is then

ri,+∞,0 =

∫ +∞

0
Φ(x)

∏

k 6=i

(1− e
− x

Sk )
e
− x

Si

Si
dx (32)

By developing the product, we obtain the following expression:

ri,+∞,0 =
1

Si

N−1
∑

k=0

(−1)k
∑

a1<...<ak,aj 6=i ∀j

LΦ





1

Si
+

k
∑

j=0

1

Saj



 (33)

E. MMF

We now consider the case α → +∞, which is analytically tractable, and of particular interest for the dynamic

alpha policy we will address later.

Since for m > 1, P [ri,tm = rj,tm , i 6= j] = 0 and P [ri,tm = 0] = 0, the scheduling rule (10) becomes:

i∗ = arg min
0≤i≤N

(ri,tm) (34)

We are now going to prove that all users have the same throughput for a MMF scheduler. We know that ri,+∞,+∞

exists, and let us assume that ri,+∞,+∞ > rj,+∞,+∞ ≥ 0, therefore, there exists a T so that:

ri,tm,+∞ > rj,tm,+∞ tm ≥ T (35)

which means that user i never transmits after T , and so ri,+∞,+∞ = 0 which contradicts our initial assumption.

Therefore, ri,+∞,+∞ = rj,+∞,+∞ ∀i, j.

We know that when user i is alone in the cell, it’s throughput is:

∫ +∞

0
Φ(x)

e
− x

Si

Si
dx =

1

Si
LΦ(

1

Si
) (36)

and since the scheduling rule (34) does not depend on the instantaneous throughput, we have that ri,+∞,+∞ =

pi
1
Si
LΦ(

1
Si
), with

∑N
k=1 pk = 1 and ri,+∞,+∞ = rj,+∞,+∞, ∀i, j, which gives the following formula:

ri,+∞,+∞ =
1

∑N
k=1

Sk

LΦ(
1

Sk
)

(37)

This formula will be useful later, because it enables us to determine analytically which users can be covered by

adjusting the α, and which users will never be able to be covered. Scheduling them would simply waste resources

and they therefore should be ignored when deciding which α to use.
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F. α-fair

For the cases in which the throughput cannot be calculated analytically, we still can use the results from Section

III to calculate it numerically. We get the algorithm described in Table I, where T is the number of simulation

steps, the ξi(t) are independent exponential random variables with mean 1 and ǫn are the step sizes.

1. ri,t0,α = 0 ∀i

For tm from t0 to T :

2. Draw N exponentially distributed variables (ξi(tm))0≤i≤N

3. i∗ = argmax0≤i≤N ( Siξi(tm)
(ri,tm,α+d)α

)

4. ri,tm+1,α =

{

(1− ǫn)ri,tm,α + ǫnΦ(Siξi(tm)) , i = i∗

(1− ǫn)ri,tm,α , i 6= i∗

TABLE I

NUMERICAL METHOD FOR CALCULATING ri,+∞,α

We can choose either ǫn = 1
n

or ǫn = ǫ with ǫ a small constant. As stated in Section III, convergence to ri,+∞,α

occurs in both cases. There is almost sure convergence in the first case and weak convergence in the latter.

G. Remark

It shall be noted that, while the method given for the MTP scheduler is analytically tractable, if Si 6= Sj ∀i 6= j

the number of terms to evaluate in (33) is 2N−1, and therefore the formula can only be used for small values of

N , in the order of N ≤ 15. For larger values we will have to rely on the numerical method instead.

V. BEHAVIOR OF DIFFERENT SCHEDULING STRATEGIES

A. Scenarios

Three scenarios have been simulated, and for all of them we choose Φ as an AWGN table. A 95% confidence

interval is given for any simulated value.

Scenario 1: PF scheduler, N users with Si = 6dB ∀i, since in this particular case the gain is insensitive to the

Si, it is the same for all users.

Scenario 2: MTP scheduler, N users with S1 = 6dB , Si = 12dB for i ≥ 2. We are interested in the gain of

the first user. The gain is not the same for everyone since the scheduler is relatively ”unfair”.

Scenario 3: α-fair scheduler, 2 users with S1 = 6dB , S2 = 12dB. The point of this scenario is to illustrate

what happens when a user is near the base station and the other one is far. By far we mean that either the user is

physically far from the BS, or he is in an area with very deep shadow fading. In both cases this user will have a

bad average channel quality.

B. Interpretation

Figure 1 shows the scheduling gain for user 1 in scenario 1, and Figure 2 in scenario 2. We can see on both figures

that the numerical method approximates the closed form formulas quite well, and we can also see on Figure 2 that

the gain for user 1 decreases when N increases, since he has poorer channel conditions. Figure 3 shows the gain

for both users in scenario 3, and we can see that the larger α is, the larger is the gain for users with poor channel

conditions, and so it is possible to manage the coverage for users at cell edge by adjusting α dynamically.

VI. FREQUENCY-SELECTIVE RAYLEIGH-FADING CHANNEL

We have put forward the diversity gain provided by an opportunistic scheduler such as the PF, and it is noted that

since we always choose the user with the best relative performance for transmission, the diversity gain is strongly

related to the tail of the fast-fading distribution. The heavier the tail, the better the diversity gain.

In this section we introduce a frequency-selective Rayleigh fading model by taking into account the impulse

response of the channel, and we analyze it’s impact on scheduling gain. It is necessary to use a frequency-selective

channel model for a system such as HSDPA because it is a wide-band system, meaning that the channel coherence

bandwidth is significantly smaller than the system bandwidth.
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Fig. 1. PF scheduling gain as a function of the number of users for Si = 6dB ∀i
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Fig. 2. MTP scheduling gain as a function of the number of users for user 1 with S1 = 6dB and Si = 12dB for i ≥ 2

A. Channel Model and Assumptions

We consider the frequency-selective Rayleigh fading model: a signal u(t) is sent through the channel, which is

modeled as a linear filter, whose impulse response is c(t):

c(t) =

L
∑

l=1

alδ(t− τl) (38)

where al is the complex amplitude of the l-th channel tap and τl the corresponding delay. Furthermore, let W denote

the L×L matrix whose elements are the wlm =
∫

u(t− τl)u
∗(t− τm)dt, and let R = diag{E[|a1|2], ...,E[|aL|2]}.

u(t) is the combination of a symbol with a spreading sequence.

We will use the following assumptions from [18]:

• al is a complex Gaussian random variable with mean 0
• The taps are independent i.e al ⊥⊥ am , l 6= m

• The receiver has perfect channel knowledge, allowing coherent detection

• We neglect inter-code interference, see [18](Section IV), i.e we suppose an ideal receiver
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Fig. 3. Scheduling gain as a function of α for 2 users and S1 = 6dB , S2 = 12dB

Each channel model is characterized by the mean received power of each tap E[|al|2] , and the corresponding

delay τl, which enables us to calculate R and W . We will consider standard channel models, which are taken from

[19] (page 184) as depicted in tables II , III and IV. It is noted that the Pedestrian B 3km/h model has more taps

with a relatively high amount of power when compared to the two other models, and we can expect the variance

of the fading to be smaller in that model, resulting in smaller scheduling gains than for the two other models.

Pedestrian A 3km/h

Relative delay (ns) Relative mean power (dB)

0 0

110 -9.7

190 -19.2

410 -22.8

TABLE II

PEDESTRIAN A 3KM/H

Pedestrian B 3km/h

Relative delay (ns) Relative mean power (dB)

0 0

200 -0.9

800 -4.9

1200 -8

2300 -7.8

3700 -23.9

TABLE III

PEDESTRIAN B 3KM/H

B. Fast-fading distribution

[18] shows that under our assumptions, pξ, the probability density function (p.d.f) of the fast-fading channel is

given by:

pξ(x) =

L
∑

l=1

pl
1

λl

e
− x

λl , x ≥ 0 (39)
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Vehicular A 30km/h

Relative delay (ns) Relative mean power (dB)

0 0

310 -1.0

710 -9.0

1090 -10.0

1730 -15.0

2510 -20.0

TABLE IV

VEHICULAR A 30KM/H

where λl are the eigenvalues of RW and pl =
∏

1≤m≤L,m 6=l
λl

λl−λm
. It is also noted that we have to assume that

λl 6= λm , l 6= m, or else the (pl)1≤l≤L are not defined. Actually, even in the case where some eigenvalues are

equal, [20] shows that it is possible to separate them artificially by a small value, with results close to the exact

solution. Furthermore the cumulative distribution function (c.d.f) of the fast-fading is Fξ(x) =
∑L

l=1 pl(1−e
− x

λl ) =

1−
∑L

l=1 ple
− x

λl .

C. Scheduling gain

We now state the scheduling gain formula for the PF scheduler. In order to reduce notational complexity, we

use the multi-index notation: given β ∈ N
L, x ∈ R

L and n ∈ N, we write |β| =
∑L

l=1 βl, x
β =

∏L
l=1 x

βl

l , and
(

n
β

)

= n!∏
L

l=1 βi!
, and < β, x >=

∑L
l=1 xlβl.

The probability of being chosen by the PF scheduler can be written (x ∈ R
+):

P

[

Φ(Six)

(ri,+∞,α + d)α
≥ max

k 6=i

(

Φ(Skξk)

(rk,+∞,α + d)α

)]

→
d→0+

[Fξ(x)]
N−1 (40)

The binomial formula then gives:

[Fξ(x)]
N−1 =

N−1
∑

n=0

(

N − 1

n

)

(−1)n[1− Fξ(x)]
n (41)

We can now evaluate each term of the sum by the multinomial formula:

[1− Fξ(x)]
n = [

L
∑

l=1

ple
− x

λl ]n =
∑

|β|=n

(

n

β

)

pβe−x<β, 1
λ
> (42)

where 1
λ
∈ R

L is the vector whose components are the 1
λl

, 1 ≤ l ≤ L.

Summing the terms in (41) gives:

[Fξ(x)]
N−1 =

∑

0≤|β|≤N−1

(

N − 1

β,N − 1− |β|

)

(−1)|β|pβe−x<β, 1
λ
> (43)

where
(

N−1
β,N−1−|β|

)

=
(

N−1
β

)

1
(N−1−|β|)!

We multiply (43) by the p.d.f of the fast-fading:

[Fξ(x)]
N−1

L
∑

l=1

pl

λl

e
− x

λl

=
∑

0≤|β|≤N−1,1≤l≤L

(

N − 1

β,N − 1− |β|

)

(−1)|β|
plp

β

λl

e
−x(<β, 1

λ
>+ 1

λl
)

(44)
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The scheduling throughput can then be evaluated by:

ri,+∞,1 =

∫ +∞

0
Φ(xSi)[Fξ(x)]

N−1
L
∑

l=1

pl

λl

e
− x

λl dx

=
∑

0≤|β|≤N−1,1≤l≤L

(

N − 1

β,N − 1− |β|

)

(−1)|β|
plp

β

λl

LΦ

(

< β, 1
λ
> + 1

λl

Si

)

(45)

It is noted that (29) is a particular case of (45) for L = 1.

D. Simulation

It is also noted that the number of terms to evaluate in (45) grows rapidly with the number of users, and for a

large number of users, it is preferable to evaluate the scheduling gain through simulation. An algorithm to do so

is stated in Table V, which allows to calculate the scheduling gain for any value of α, and the convergence proof

stated in Section III still holds.

1. ri,t0,α = 0 ∀i

For tm from t0 to T :

2. Draw N random variables (ξi(tm))0≤i≤N with p.d.f pξ(x) (39)

3. i∗ = argmax0≤i≤N ( Siξi(tm)
(ri,tm,α+d)α

)

4. ri,tm+1,α =

{

(1− ǫn)ri,tm,α + ǫnΦ(Siξi(tm)) , i = i∗

(1− ǫn)ri,tm,α , i 6= i∗

TABLE V

NUMERICAL METHOD FOR CALCULATING ri,+∞,α ON A FREQUENCY SELECTIVE CHANNEL

As previously, ǫn = 1
n

or ǫn = ǫ > 0 a small constant both ensure convergence.

E. Numerical results

We can now use the previous result to calculate the diversity gain in the models we are considering. For both

figures we show the scheduling gain of a PF scheduler with up to 10 users, all users having a SINR of 6dB.

Figure 4 shows the scheduling gain of a PF scheduler with the Vehicular A model, obtained by formula (45), and

by simulating the PF scheduler and the frequency-selective channel for 1000 time slots as specified in Table V. A

95% confidence interval is given for the values obtained by simulation. Figure 5 shows the scheduling gain of the

PF scheduler for the models stated previously, and we can see that it decreses appreciably depending on the fading

model, which shows that frequency-selectivity results in smaller scheduling gains.

We can therefore conclude that frequency-selectivity is an adverse effect which diminishes the diversity gain of

the PF scheduler.

VII. COVERAGE-CAPACITY SELF-OPTIMIZATION USE CASE

A. System Model

This Section considers an important SON use case, namely the coverage-capacity self-optimization using the

above results. We consider a TDMA system such as HSDPA. Mobility is ignored. We consider that all traffic

corresponds to file transfers with a constraint on the minimal user throughput, e.g: a user watching a streaming

video. We say that a user is covered if his mean throughput during the averaging period is superior to Thmin, with

Thmin a fixed threshold necessary to provide a minimal QoS. We are hence concerned with choosing α properly so



15

1 2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of users

S
c
h
e
d
u
lin

g
 g

a
in

 

 

analytic

numeric

Fig. 4. PF scheduling gain as a function of the number of users for Si = 6dB ∀i
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Fig. 5. Comparison of PF scheduling gain for different propagation models

that the number of covered users is maximal without degrading the cell capacity. We consider a full-buffer model,

which is only reasonable if we want to evaluate the system performance on a relatively short time-scale. On the

contrary, we will not be able to evaluate performance metrics such as blocking rate, which requires to model the

system at the flow level. Evaluation of the proposed scheme using a queuing theory approach is currently being

investigated. Furthermore, we focus on a single base station since the proposed scheme is fully distributed. The

only interaction between base stations is interference, and we assume that interference coming from neighboring

cells does not depend on the central cell load. This can be done by considering the worst case interference, i.e that

the central cell is fully loaded.

1) Time Scales: We call averaging period the interval [tm, tm′ ], on which the average throughput given by the

scheduler is calculated and determines which users are not covered. Therefore, the averaging period should be long

enough for the scheduling algorithm to converge, and we will show that it is the case with our assumptions (see

Figure 11).

2) Path Loss: Path loss is given by the following formula:

Li,s = A
1

dνi,s
(46)
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with di,s being the distance between user i and the base station s, and A, ν two constants that depend on the

environment.

3) Shadowing: Let χi,s denote the shadowing between user i and base station s, which we model by a log-normal

random variable:

χi,s = 10
aǫ1+bǫ2

10 (47)

with ǫi ≡ N(0, σ2) , i ∈ {1, 2} and a,b - two constants. As mobility is not considered, shadowing and path loss

remain constant during the whole process.

4) Interference: We consider first-tier neighboring cells as the only source of interference and assume that the

total interference, Itot, is related to the average neighboring cell load. Let ρ denote the neighboring cell load. We

consider here a simple model to show that the scheduler is able to adapt itself to varying traffic conditions (t in s):

ρ(t) = |sin(π t

30
)| (48)

(48) assumes that the number of interferers is large.

Interference to user i caused by neighbors follows the same model than the useful signal:

Ii,neighbor = ρPmaxA
χi,neighbor

dνi,neighbor
(49)

where Pmax is the maximal power emitted by a base station, and we assume that all base stations emit with the

same power.

Ii,tot =
∑

neighbor

Ii,neighbor (50)

5) SINR: Let si be the serving base station for user i. The SINR for user i can then be calculated by the

following formula:

SINRi =
Pmaxχi,siLi,si

Ii,tot + σN 2
(51)

where σN
2 is the thermal noise.

B. Control strategy

We now get to the main point of the article: designing a self-optimizing network functionality for coverage-

capacity optimization. It shall adjust α dynamically, based on the observed Key Performance Indicators (KPIs)

available every averaging period: outage, user throughput, etc.

As mentioned before, when α → ∞, the scheduler becomes a MMF scheduler. Therefore the quantity ri,∞,∞

defines two possible behaviors:

• ri,∞,∞ > Thmin: if we set α large enough we shall be able to cover user i

• ri,∞,∞ < Thmin: user i will never be covered, no matter how large α is chosen

Hence, if we are in the latter case, we can use (37) to calculate the throughput of the MMF scheduler, and choose

to ignore the users that cannot be covered. This is done by ignoring the user with the biggest Si

LΦ(
1

Si
)
, i.e the user

with the lowest Si, since
LΦ(

1

Si
)

Si
is the throughput of user i when he is alone in the cell. We can then recalculate

the MMF throughput with the formula, and keep doing so until it is above Thmin.

C. Optimality criteria

We are interested in finding the α with the best capacity-coverage performance, but we shall not forget that

this comes at a price: the larger the α, the larger the capacity loss. For example, choosing α = +∞ all the time

would result in covering all users that can be covered all the time, but this controller could hardly be called optimal.

Therefore, to avoid a multi-criteria optimization problem, we will define the optimal α as the minimal α that covers

all users, and in this way we will not have to consider the maximization of the global throughput explicitly.
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D. Modified ǫ-greedy policy

The method proposed here could be seen as a modified version of the ǫ-greedy policy that is popular for several

reinforcement learning problems. Thanks to (37), we are able to calculate the maximum number of users that can

be covered for α large enough. Therefore any α that has previously resulted in covering all the users that can be

covered is an upper bound for the optimal α, at least for a certain period of time in which the traffic conditions do

not change too drastically. We define a finite set of possible values for α, (α(1), ..., α(Nα)). We use the following

notation to denote an increment of α: α(n)++
= α(min(n+1,Nα)) and α(n)−−

= α(max(n−1,1)).

For the k-th averaging period, nk denotes the number of covered users and Nk the maximal number of users

that can be covered for α large enough. Pǫ is a small probability used for exploration. The algorithm is described

in table VI.

Initial phase:

1. Calculate N0 using (Table VII)

2. Try every α ∈ {1, ..., 10} once

3. Choose α1 as the minimal α that covers N0 users.

For every averaging period k:

4. Calculate Nk using (Table VII)

5. Set α = αk and observe resulting nk

If nk < Nk:

6. αk+1 = αk+1
++

If nk = Nk:

7. αk+1 =

{

αk
−−

with probability Pǫ

αk with probability (1− Pǫ)

TABLE VI

MODIFIED ǫ-GREEDY ALGORITHM

Initial phase:

1. I = ∅
2. Calculate ri,∞,∞ using (37)

While ri,∞,∞ < Thmin:

3. i = argmink∈{1,...,N}/I Sk

4. Add i to I
5. Calculate ri,∞,∞ ignoring users in I , using (37)

Result:

6. Nk = N − |I|

TABLE VII

CALCULATION OF Nk

One shall also note that this method involves virtually no computation, since the Laplace transform of Φ can be

calculated numerically beforehand and tabulated, which means that the calculation of Nk simply implies looking

at most N times in a table of values.

The choice of Pǫ is critical, like in most reinforcement learning algorithms, since it quantifies how often the

algorithm will lower the α despite being currently able to cover all users. The point is to try to improve the cell

capacity because the current α might not be the lowest α that covers all users anymore. The problem is that by

doing so users at cell edge may loose coverage. The value of Pǫ can therefore be related to the speed at which the

environment changes.

In our case we have chosen Pǫ = 0.33, that is exploring every 3 averaging periods, with an averaging period of

1s, which means that the environment is expected to change every 3 seconds.

E. Simulation scenario

To illustrate the method described above, we have simulated it’s behavior choosing Thmin so that users at cell

edge are in the limit of coverage, namely that their mean throughput is close to Thmin. Simulation parameters are

listed in Table VIII.



18

Users per cell 10
Inter-site distance 1km
Pmax 16W
tm+1 − tm 1ms
Averaging period 1s

(α(1), ..., α(Nα)) (1, ..., 10)
ǫ 0.05
Pǫ 0.33
ν 3.5 (dense urban)

σ 6.5dB
a,b 0.5
σ2
N −173dBm/Hz

Φ AWGN table

Fast-fading model Pedestrian A 3km/h

TABLE VIII

MODEL PARAMETERS
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Fig. 6. Neighboring cell load (eq.(48))

F. Interpretation

Figure 6 shows the evolution of neighboring cell load during the simulation. Figure 7 shows the number of users

covered by a PF policy, i.e αt = 1 ∀t, which we use as a reference, and Figure 8 shows the number of users

covered using the method described in VI. We can see that while the PF policy only covers approximatively 6
users during interference peaks, the self-optimization manages to cover all users almost all the time.

Figure 9 shows how α evolves dynamically, and despite the relatively chaotic behavior of the network, the

controller effectively follows the variations of interference. The optimization process uses available KPIs, increasing

α when the interfering power increases, and decreasing it otherwise. The fact that the method effectively decreases

α when the interfering power lowers is fundamental, since it guarantees that there is an optimal trade-off between

capacity and coverage, since α being too high means wasting capacity. Furthermore, the method involves virtually

no calculation, and it can be implemented easily in a real network.

Furthermore, we compare the performance of 3 schemes: αt = 1 ∀t, αt = 10 ∀t, and the self-optimizing method

in Table IX, and we can see that the self-optimizing method covers almost all users, while achieving significantly

higher mean throughput than the policy αt = 10 ∀t, meaning that the proposed method effectively realizes a

trade-off between coverage and capacity.
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Fig. 7. Covered users under PF policy (αt = 1 ∀t)
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Fig. 8. Covered users with self-optimizing method (table VI)

Policy Mean number of covered users Mean throughput(scaled)

αt = 1 ∀t 7.97 100%

αt = 10 ∀t 9.86 71%

Self-optimizing scheme 9.60 83%

TABLE IX

COVERAGE-CAPACITY TRADE-OFF

G. Validity of our assumptions

1) Interference fading: We have assumed throughout this article that the fast-fading of the interfering signals can

be ignored since the number of interfering signals is large, meaning that the instantaneous SINR is distributed as an

exponential random variable as stated in equation (11). We simulate here the distribution of the instantaneous SINR

when the useful signal as well as interfering signals are fading and follow a Rayleigh model, and we compare it

with the exponential distribution, using the same model for path loss and shadowing as above, and only considering

interference from first-tier neighbors. Figure 10 shows the p.d.f of the instantaneous SINR divided by the mean
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Fig. 9. Evolution of αt with self-optimizing method (table VI)
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Fig. 10. Impact of the interference fading on the instantaneous SINR distribution

SINR pξ(x) for cell center users and cell edge users, and we can see that those distributions are very close to the

exponential distribution. Furthermore, we can see that the exponential approximation is worse when considering

cell edge users compared with cell center users. This is logical since cell edge users have one or two dominant

interferers, while cell center users are equally interfered by the 6 neighboring cells.

2) Convergence speed of the scheduler: We have assumed that the averaging period should last 1s, and the

scheduler should have time to converge within this period. Figure 11 shows the mean allocated throughput for

users 1 and 2, when there are 10 users, and S1 = 6dB, Si = 12dB, 2 ≤ i ≤ 10. The theoretical limit of the mean

throughput given by our closed-form formulas is also indicated. We can therefore see that assuming convergence

on the time scale of 1s is reasonable.

3) Perfect channel knowledge: We have assumed perfect channel knowledge, which is the optimal case for

scheduling, and corresponds to a case in which user mobility is limited. Namely, since there is a delay between

channel measurement and the scheduling decision, we require this delay to be small when compared to the fast-fading

correlation time. This problem has been addressed in [7], and a method is provided to compute the scheduling gain

as a function of the correlation between the channel measurement and the channel state after the measurement delay.

It is shown that the scheduling gain is strictly increasing when this correlation increases, and that the scheduling
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Fig. 11. Mean allocated throughput by the scheduler as a function of time

gain tends to the value obtained in the ideal case when this correlation goes to 1. Hence our approach remains

valid as long as we are not considering extreme mobility.

VIII. CONCLUSION

This paper has presented a self-optimization scheme based on α-fair schedulers that uses KPIs available from

the network to enhance coverage and capacity. First, scheduling gains have been derived using both closed form

expressions and a statistical based fast algorithm. The impact of the channel model on the scheduling gain has

also been analyzed. The scheduling gain computation is necessary for the design of the self-optimization scheme

within a simulator. A use case of dynamic adaptation of the α-fair scheduler has been presented. Simulation results

show that the self-optimization scheme considerably increases the coverage of users at cell edge and that the α-

fair parameter follows the interference variation. The simplicity of the method makes it suitable for real network

implementation.
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