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ABSTRACT

We investigate multi-armed bandits with budgets, a natural model
for ad-display optimization encountered in search engines. We pro-
vide asymptotic regret lower bounds satisfied by any algorithm, and
propose algorithms which match those lower bounds. We consider
different types of budgets: scenarios where the advertiser has a
fixed budget over a time horizon, and scenarios where the amount
of money that is available to spend is incremented in each time slot.
Further, we consider two different pricing models, one in which an
advertiser is charged for each time her ad is shown (i.e., for each
impression) and one in which the advertiser is charged only if a
user clicks on the ad. For all of these cases, we show that it is pos-
sible to achieve O(log(T )) regret. For both the cost-per-impression
and cost-per-click models, with a fixed budget, we provide regret
lower bounds that apply to any uniformly good algorithm. Further,
we show that B-KL-UCB, a natural variant of KL-UCB, is asymp-
totically optimal for these cases. Numerical experiments (based
on a real-world data set) further suggest that B-KL-UCB also has
the same or better finite-time performance when compared to var-
ious previously proposed (UCB-like) algorithms, which is impor-
tant when applying such algorithms to a real-world problem.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Learning; G.3 [Mathematics

of Computing]: Probability and Statistics

Keywords

ad-display optimization; search engines; multi-armed bandits; learn-
ing; budgets; UCB; KL-UCB

1. INTRODUCTION
The multi-armed bandit (MAB) involves an decision maker who

samples from several statistical populations with unknown distribu-
tions (also called “arms”), with the goal of maximizing the cumula-
tive sum of drawn samples (called the “rewards”). The objective is
to minimize the regret, which is the difference between the sum of
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rewards obtained by a given sampling strategy, and that of the best
sampling strategy if the distribution of each arm were known. The
number of arms can be finite (discrete bandits), countably infinite
(infinite-armed bandits) or uncountably infinite (continuous ban-
dits). MABs are stylized models for sequential decision problems
with uncertainty, featuring in particular the so-called “exploration-
exploitation” trade-off. MABs have been an active subject of re-
search since the 30’s, [24], [21].

For discrete bandits with uncorrelated arms, a notable result is
[20], showing that in the asymptotic regime T → ∞ (with T de-
noting the time horizon), there exists a regret lower bound for any
algorithm that achieves O(log(T )) regret for any input distribution,
and provides an algorithm whose regret matches this lower bound.
Further research has provided computationally simple, asymptoti-
cally optimal algorithms [19], [12], [16], with good finite-time be-
haviour.

More recent research has focused on so-called structured MABs,
where the unknown parameters of the problem (say the expected
values of the arms) have a certain structure and lie in some set
known to the decision maker. The goal is to quantify the perfor-
mance gain due to a given type of structure, and both regret lower
bounds and asymptotically optimal algorithms have been proposed
for certain structures. Structured MABs are interesting because
they naturally arise in the design of computer systems (at large), for
instance: wireless networks [9], shortest-path routing [13], search
engines [23] and ad-display optimization [22].

For discrete bandits several structures have been studied: uni-
modal [7], combinatorial [5], arms with lower bounded differences
[4] to name but a few. Continuous bandits are by definition ban-
dits with correlated arms, since the expected reward (as a func-
tion of the arm) is assumed to be continuous. Many natural struc-
tures have been considered, including: Lipshitz continuous [17],
unimodal [28], strongly convex [10].

In this paper we study the problem of discrete MABs with bud-
gets, where the number of times a given arm may be selected is
upper bounded by a number called the budget. The budget of an
arm need not be deterministic: it may be a random variable, and
may depend on the sample path (the successive rewards of arms).
MABs with budgets are a natural model for ad-display optimization
(e.g., Google Ad-Words). Given a search query, several advertis-
ers would like to display an ad and the search engine must choose
which ad to display. The chosen ad is displayed to a user (this is
termed an impression) who may or may not click on it. The corre-
sponding advertiser is charged either when her ad is shown (cost-
per-impression), or clicked (cost-per-click). Each advertiser has a
maximal amount of money she can spend, so that any ad cannot
be displayed infinitely many times. Uncertainty is due to the fact



that the probability for a given ad to be clicked (also known as the
click-through-rate or CTR) is unknown and must be learnt.

Our model is a generalization of the models considered in [22],[14].
We will consider three cases:

• Cost-Per-Impression (CPI): an arm may be played a deter-
ministic number of times

• Cost-Per-Click (CPC): an arm may be played until its accu-
mulated reward is above a deterministic number

• General budgets: the maximal number of plays of an arm is
an arbitrary non-decreasing function of time, and may de-
pend on the sample path

It is noted that the general budgets assumption allows for feed-
back. This is well-suited for ad-display optimization because in
practice advertisers may change their future budget allocations based
on the historical (sample path) click-through-rates.

Our contribution

(a) For general budgets, we demonstrate that B-KL-UCB, a natu-
ral variant of KL-UCB, achieves O(log(T )) regret, improving the

results of [2], [22] which give an upper bound of O(
√
T ). The

proof uses a coupling argument, showing that, when we consider
an arbitrary algorithm π and the optimal algorithm π⋆ run on the
same sample path, at any given time, the expected value of the best
arm available to π is higher than that available to π⋆. This induces
a type of majorization order that allows us to prove the result.

(b) Next we consider the CPC and CPI case where the budget
of each arm is a linear function of the time horizon, and we prove
asymptotic (when the time horizon goes to infinity) regret lower
bounds satisfied by any algorithm achieving O(log(T )) regret re-
gardless of problem parameters. The technique for proving the
lower bound is different than the one introduced by Lai and Rob-
bins in the seminal paper [20], and uses an inequality of [27] by
reducing the problem to a single classical hypothesis test at the end
of the time horizon. This technique might be useful beyond the
scope of this article, as it renders the proofs significantly shorter
than the original one proposed by Lai and Robbins.

(c) We provide finite-time regret upper bounds for B-KL-UCB.
As a consequence, we prove that B-KL-UCB is asymptotically op-
timal in the CPI case, as well as in the CPC case if a simple sep-
aration assumption on the budgets is satisfied (which would most
likely be the case in practice). For instance the set of budget vectors
that do not satisfy this condition has Lebesgue measure zero.

(d) We assess the finite-time performance of B-KL-UCB using
numerical experiments. The simulation parameters (number of ad-
vertisers and CTRs) are extracted from a publicly available data set
[1]. We confirm the intuition provided by our theoretical results
that B-KL-UCB works significantly better than UCB-type algo-
rithms based on Hoeffding’s inequality (such as the ones proposed
in [14, 22]) which do not take into account the variance of the re-
wards, and lower bound the Kullback-Leibler (KL) divergence by
twice the square distance (Pinsker’s inequality). Indeed, in prac-
tice the values of the arms are small (most popular ads have a CTR
of 2% or less), hence have low variance when they are modeled
as Bernoulli random variables. An algorithm which is a heuristic
modification of the PD-BwK algorithm proposed in [2] performs
similarly to B-KL-UCB in simulations, although it lacks a cor-
responding problem-dependent regret bound and additionally re-
quires knowledge of the time horizon.

Related Work

First, for arbitrarily large budgets, the problem reduces to the
classical multi-armed bandit problem [20], and B-KL-UCB reduces
to KL-UCB, which is known to be asymptotically optimal for that

problem. The regret lower bounds also reduce to the classical one
from [20]. Also, one can notice that bandits with budgets are an
instance of sleeping bandits [18], which are bandit problems where
not all arms may be selected at a given time. However, in [18],
the available arms are chosen by an oblivious adversary, so that
arms available at a given time are arbitrary but may not depend

on the arms selected previously. Hence there is no straightforward
extension of [18] to our setting. A different but related setting is
that of bandits with a single knapsack constraint, considered in [25,
26]. Namely, all arms may be played until a weighted sum (with
known weights) of the number of draws of each arms exceeds a
known constant. The crucial difference is that in this model the
optimal policy draws a single arm (maximizing the ratio between
its expected reward and its weight), while in our setting the optimal
policy (in general) plays several arms.

Another related problem is the knapsack bandit studied in [2].
There are several constraints on the weighted sum of rewards ob-
tained on the different arms. Any arm might be selected, until one
of the constraints is violated, and then the problem stops. There
is a similarity between knapsack bandits and bandits with budgets
(explored in the simulations section). However the results of [2]
are quite different from ours: [2] considers minimax regret (for a
given T , the regret on the worst problem instance, which in general
depends on T ), while we study problem-dependent regret, where
a fixed instance is considered and we study the regret as T goes
to infinity (as in [20]). Specifically, the authors obtain a minimax
regret of O(

√
T ) (up to multiplicative logarithmic terms). It is also

noted that the algorithms in [2] rely on knowledge of T , whereas
our algorithm does not.

The rest of the paper is organized as follows: in section 2 we de-
fine the model considered for bandits with budgets. In section 3 we
prove that the optimal policy for each of the models considered here
is the greedy policy (i.e. the one which plays the available arm with
the highest expected value). In section 4 we provide lower bounds
on the regret of any uniformly good algorithm in the CPI and CPC
case. In section 5 we provide regret upper bounds for algorithm B-
KL-UCB and demonstrate its asymptotic optimality in the CPI and
CPC cases. In section 6 we assess the finite time performance of B-
KL-UCB and its competitors by numerical experiments. Section 7
concludes the paper. For ease of reading, proofs and intermedi-
ate results are found in section 10. Some additional intermediate
results are found in the appendix.

2. THE MODEL
We consider a bandit problem with a finite number of arms K ≥

1 and time horizon T ≥ 0. Time is discrete, at time n ∈ {1, ..., T}
a decision maker is provided with a set of allowed arms A(n) ⊂
{1, ..., K}, and selects an arm k(n) ∈ A(n). Then she receives a
reward Xk(n)(tk(n)(n)), where tk(n) is the number of times arm
k has been selected between time 1 and n. We assume that the
rewards (Xk(i))1≤k≤K,i≥0 are independent, and that Xk(i) is a
Bernoulli random variable with parameter µk . We define Sk(t) =
∑t

i=1 Xk(i) to be the accumulated rewards obtained from arm k
after selecting it t times. We denote by µ = (µ1, . . . , µK) ∈
[0, 1]K the parameters of the problem. We assume that there ex-
ists functions n 7→ ck(n) called budgets, so that the allowed set of
arms can be written as: A(n) = {1 ≤ k ≤ K : tk(n) ≤ ck(n)}.
It is noted that ck(n) is not assumed to be deterministic and is pos-
sibly sample path dependent. We call sample path dependent any
quantity that depends on the rewards (Xk(i))1≤k≤K,i≥0.

We will consider three possible models for the availability of
arms:



• Cost-per-impression (CPI): ck(n) = Tck for all n ≤ T with
ck ≥ 0 a constant.

• Cost-per-click (CPC): ck(n) = τk for all n ≤ T , where

τk = min{t : Sk(t) ≥ Tck} and ck ≥ 0 a constant.

• General budgets: n 7→ ck(n) an increasing, possibly sample
path dependent function.

We denote by Fn the σ-algebra generated by

{A(1), . . . , A(n+ 1), Xk(1)(tk(1)(1)), . . . , Xk(n)(tk(n)(n))}.

We consider adaptive policies, so that k(n) is Fn−1 measurable
for all n. We denote by Π the set of adaptive policies. When
the decision rule considered is not clear from a context we de-
note it with a superscript, for instance kπ(n) is the arm selected
at time n by policy π ∈ Π. We define π⋆ to be the oracle policy
(which knows µ) and maximizes the expected accumulated sum of

rewards:
∑K

k=1 µkE[t
π⋆

k (T )]. We further define the regret of deci-
sion rule π by:

Rπ(T ) =

K
∑

k=1

µkE[t
π⋆

k (T )]−
K
∑

k=1

µkE[t
π
k (T )].

The regret of policy π is the loss in accumulated reward due to the
the fact that parameters µ are unknown to π. We say that policy π is
uniformly good if, for all problem instances, Rπ(T ) = O(log(T ))
when T → ∞.

In this article we present our results when rewards are Bernoulli
distributed, mainly for simplicity and due to the fact that the model
originates from ad-display optimization where rewards (click / no
click) are indeed Bernoulli distributed. However, it should be clear
that the regret upper bounds apply without modification to any
bounded reward distribution in [0, 1]. Furthermore, both upper
and lower bounds hold for rewards in a one-dimensional exponen-
tial family, (provided that they are sub-Gaussian), by replacing the
Bernoulli KL divergence with the appropriate divergence measure.
For instance, for Gaussian rewards with known variance, our re-
sults hold where the KL divergence is taken equal to the square
distance divided by twice the variance. See the discussion in [12]
for additional clarification.

3. PRELIMINARY RESULTS

3.1 Some notations
We assume that the arms are indexed such that µ1 > . . . > µK .

For both the CPI and CPC cases we define c = (c1, . . . , cK) to be
the budget vector. We define I(p, q) = p log( p

q
)+(1−p) log( 1−p

1−q
)

to be the KL divergence between Bernoulli distributions of param-
eters p and q. We use the convention that the value of an empty
sum is zero, so that

∑0
k′=1 ... = 0.

3.1.1 CPI case

In the CPI case we define k⋆ = min{k :
∑k

k′=1 ck′ ≥ 1} to
be the last arm played by a greedy policy with knowledge of the
µk’s, which would play the arms in increasing order (until their
respective budgets are exhausted). We define the fraction of time

that such a policy would play arm k⋆: c = 1 −∑k⋆−1
k′=1 ck′ . It is

noted that c > 0, and that c = 1 if k⋆ = 1.

3.1.2 CPC case

Consider the CPC case. We recall the definition of τk, τk =
min{t : Sk(t) ≥ Tck} which is the number of plays of arm k

until Tck successes are realized. We define the random variable k̃
to be the last arm played by a policy which would play the arms in
increasing order (until their respective budgets are exhausted):

k̃ =

{

min{k :
∑k

k′=1 τk′ ≥ T}, if
∑K

k=1 τk ≥ T

K, otherwise
.

We define the random variable τ to be the number of plays of arm

k̃: τ = T −∑k̃−1
k=1 τk. It is noted that τ = T if k̃ = 1.

We will relate these random quantities to the deterministic quan-
tities obtained by taking expectations over sample paths. That is,
we define dk = ck/µk, the expected fraction of time that arm k
could possibly be played, so that a CPI model with budgets of Tdk
emulates this CPC model with budgets of Tck. We then define
k⋆ = min{k :

∑k

k′=1 dk′ ≥ 1}, the last arm played by the greedy
policy with knowledge of the µk’s, modulo the randomness in the
budgets. It is noted that the definition of k⋆ is not the same for CPI

and CPC. Finally, we define d = 1 −∑k⋆−1
k=1 dk, the fraction of

time that such a policy would play arm k⋆.

3.1.3 High probability events

We use the following convention throughout the remainder of
the article: For a given event A, we say that A occurs with high
probability (w.h.p.) iff there exists a function pA(µ, c) such that for
all T : 1 − P[A] ≤ pA(µ, c)T−1. Also we say that A occurs with
small probability if its complement occurs w.h.p. It is noted that
any event that occurs with small probability incurs only a constant

regret. Denote by r(T ) the regret of a sample path, and consider A
an event that occurs w.h.p., then, since r(T ) ≤ T :

Rπ(T ) = E[r(T )] = E[r(T )1{A}] + E[r(T )1{Ac})]
≤ E[r(T )1{A}] + pA(µ, c).

Hence given an event A which occurs with small probability, when
analysing the regret of algorithms, one may simply ignore any sam-
ple path on which A occurs, at the expense of a constant regret
term.

3.2 Optimal policy
In the case of general budgets, calculating the expected reward

of the optimal policy is not completely straightforward. This is due
to the fact that the set of available arms A(n) is a random variable,
and depends on the arms selected at instants {1, . . . , n−1} as well
as the rewards (Xk(i))1≤k≤K,i≥0.

Define π̂ to be the (greedy) policy which plays the arms in in-
creasing order until their budgets are exhausted, i.e., kπ̂(n) =
minAπ̂(n). It turns out that in the general budgets case (so in
the CPI and CPC cases as well), we have that π⋆ = π̂ from which
we can characterize the value of π⋆.

PROPOSITION 1. For general budgets, we have that π⋆ = π̂,

i.e. the greedy policy is optimal.

In the CPI case, the reward of π⋆ is RT with:

R =

k⋆−1
∑

k=1

ckµk + cµk⋆ .

In the CPC case the expected accumulated reward of π⋆ is:

E[µk̃τ +

k̃−1
∑

k=1

µkτk].



4. REGRET LOWER BOUNDS
To simplify the regret lower and upper bounds we define ∆ =

mink 6=k′ |µk − µk′ |. For 0 < ǫ < ∆ we define:

δǫk =
∑

k′>k

µk − µk′

I(µk′ + ǫ, µk)
.

with the convention that δk = δ0k.
Theorems 4.1 and 4.2 give lower bounds on the regret of any

uniformly good algorithm.

THEOREM 4.1. Consider the CPI case. For any uniformly good

policy π ∈ Π, we have that for all k > k⋆:

lim inf
T→∞

E[tπk (T )]

log(T )
≥ 1

I(µk, µk⋆)
.

By corollary the regret satisfies the lower bound:

lim inf
T→∞

Rπ(T )

log(T )
≥ δk⋆

THEOREM 4.2. Consider the CPC case. For any uniformly good

policy π ∈ Π, we have that for all k > k⋆:

lim inf
T→∞

E[tπk (T )]

log(T )
≥ 1

I(µk, µk⋆)
.

By corollary the regret satisfies the lower bound:

lim inf
T→∞

Rπ(T )

log(T )
≥ δk⋆

For both the CPI and CPC cases, it is noted that arms k ≤ k⋆

do not contribute to the regret lower bound, and that the minimal
number of times an arm k > k⋆ may be played depends only on its
expected value and the value of µk⋆ . In fact it is as if arms below k⋆

do not matter at all for our analysis. This will be made clear in light
of the matching upper bounds derived in section 5. Furthermore,
note that when the budgets are large enough, (for instance by setting
c1 = 1 in the CPI case, and letting c1 → ∞ in the CPC case), we
have that k⋆ = 1, so that Theorems 4.1 and 4.2 reduce to the well
known result of Lai and Robbins [20].

The proof technique is similar to that of [4, 3, 6], and uses a
reduction to a hypothesis test between two point hypotheses (a
Neyman-Pearson test). However, the way in which we choose our
hypothesis test is able to precisely recover the Lai and Robbins
lower bound in [20], whereas the results in [4] do not do so. In
particular, consider a given uniformly good algorithm π and two
parameters µ and λ such that π must have a different behaviour
under µ and λ. Say π plays a certain arm O(T ) times under λ, but
only O(log(T )) times under µ. Then we argue that the algorithm
must be a hypothesis test with risk O(T−1) between hypotheses
H0 = {µ} and H1 = {λ}. Of course the original proof [20] used
such an argument, but involved some manipulations of likelihood
ratios, whereas we use an inequality of [27] which reduces these
calculations to essentially a single line. Also note that, contrary to
[4], we do not treat the arms played at times n ∈ {1, ..., T} as a
series of tests, but simply argue that the number of times each arm
has been sampled by the end of the time horizon (t1(T ), ..., tK(T ))
can be used as a test statistic.

Finally, it should be noted that both Theorems 4.1 and 4.2 are
still valid when the rewards are not Bernoulli, and instead belong
to a parametric family of distributions for which one can define the
KL divergence. In that case one may simply replace the Bernoulli
KL divergence I(·, ·) by the relevant divergence measure, e.g., for
Gaussian rewards with fixed variance one may replace I(·, ·) by the
square distance divided by twice the variance.

5. REGRET UPPER BOUNDS
In this section we analyse the regret of B-KL-UCB, an algorithm

which is asymptotically optimal (in most cases of interest), i.e., its
regret matches the lower bounds given in section 4. It is a natural
extension of KL-UCB [12] proposed for bandits with independent
arms, which reaches the Lai-Robbins bound [20].

We define the empirical reward of arm k at time n: µ̂k(n) =
Sk(tk(n))/tk(n) if tk(n) > 0 and µ̂k(n) = 0 otherwise. We
introduce the (KL-UCB) index of arm k at time n:

bk(n) = sup{q ∈ [µ̂k(n), 1] : tk(n)I(µ̂k(n), q) ≤ f(n)},
with f(n) = log(n) + 3 log(log(n)). The B-KL-UCB algorithm
is the rule that picks the available arm with largest index:

Algorithm 1 B-KL-UCB

for n = 1, 2, . . . , T do

pull arm k(n) = argmaxk∈A(n) bk(n)
end for

5.1 General budgets
Theorem 5.1 proves that B-KL-UCB achieves O(log(T )) regret

in the general budgets case. This in particular proves that in the
gradual budget case considered in [14] (where ck(n) is determin-
istic and proportional to n), we also have O(log(T )) regret, which

is an improvement on the O(
√
T ) upper bound derived in [14].

The proof is based on the following coupling argument: we show
that if π = B-KL-UCB and the optimal policy π⋆ are run on
the same sample path, then we have that, at all time instants n,

minAπ(n) ≤ minAπ⋆

(n). Hence either kπ(n) ≤ kπ⋆

(n), which

incurs no regret, or we have that kπ(n) > kπ⋆

(n) ≥ minAπ⋆

(n) ≥
minAπ(n), which happens only O(log(T )) times. We derive and
use Lemma 10.3, an intermediate result shown in appendix. Lemma
10.3 enables us to deal with bandit problems where the available
set of arms is a stochastic process and might depend on the past
decisions, hence we believe it could be useful beyond the scope of
this article, to analyse problems such as sleeping bandits [18] and
knapsack bandits [2].

THEOREM 5.1. Consider general budgets. Under policy π =
B-KL-UCB, for all 0 < ǫ < ∆ the regret admits the upper bound:

Rπ(T ) ≤ f(T )
K
∑

k=2

µ1 − µk

I(µk + ǫ, µk−1)
+CK(log(log(T ))+ǫ−2).

with C > 0 a constant independent of µ, c and ǫ.

5.2 CPI case
Theorem 5.2, gives a finite-time regret upper bound for B-KL-

UCB in the CPI case, from which we can deduce that B-KL-UCB
is asymptotically optimal.

THEOREM 5.2. (i) Under policy π = B-KL-UCB,

for all 0 < ǫ < ∆ the regret admits the upper bound:

Rπ(T ) ≤ f(T )δǫk⋆ + CK(log(log(T )) + ǫ−2) + C0(c, µ).

with C > 0 a constant independent of µ, c and ǫ,
and C0(c, µ) > 0 a function independent of T and ǫ.

(ii) By corollary:

lim sup
T→∞

Rπ(T )

log(T )
≤ δk⋆ ,

i.e., B-KL-UCB is asymptotically optimal.



REMARK 1. Note that Theorem 5.2 is not simply a specializa-

tion of Theorem 5.1 to the the CPI case, as the coefficients of f(T )
are different in the two cases. In particular, there is no proxy for k⋆

in the general budget case, whereas we exploit the existence of k⋆

to tighten the upper bound in Theorem 5.2.

5.3 CPC case
Theorem 5.3, gives a finite-time regret upper bound for B-KL-

UCB in the CPC case, from which we can deduce that B-KL-UCB
is asymptotically optimal. In the derived regret upper bound, the
dominant term (the multiplicative term in front of the log(T )) is
a convex combination of δk⋆ and δk⋆+1. By Theorem 5.2, those
quantities represent the asymptotic regret in the CPI case where the
last played arm by π̂ is k⋆ and k⋆ + 1 respectively. Furthermore if

we add the separation assumption
∑k⋆

k=1 dk > 1, then the asymp-
totic regret is that of the CPI case. Since the regret lower bound of
theorem 4.2 is met by the upper bound, B-KL-UCB is asymptoti-
cally optimal.

The proof of Theorem 5.3 involves upper bounding the num-
ber of times a sub-optimal arm might be played, and we do so
by decomposing this number based on the expected value of the
best arm available (i.e minA(n) ). As in the general budgets case,
Lemma 10.3 is instrumental here. The proof is completed by study-
ing the concentration of τk and k̃ and τ , based on classical concen-
tration inequalities.

THEOREM 5.3. (i) Under policy π = B-KL-UCB, there ex-

ists α(T ) ∈ [0, 1] such that, for all 0 < ǫ < ∆ the regret

admits the upper bound:

Rπ(T ) ≤f(T ) [α(T )δǫk⋆ + (1− α(T ))δǫk⋆+1]

+CK(log(log(T )) + ǫ−2) +C1(c, µ),

with C > 0 a constant independent of µ, c and ǫ,
and C1(c, µ) > 0 a function independent of T and ǫ.

(ii) By corollary:

lim sup
T→∞

Rπ(T )

log(T )
≤ max(δk⋆ , δk⋆+1).

(iii) If
∑k⋆

k=1 dk > 1 we have α(T ) →T→∞ 1 so that

lim sup
T→∞

Rπ(T )

log(T )
≤ δk⋆ ,

i.e., B-KL-UCB is asymptotically optimal.

6. NUMERICAL EXPERIMENTS

6.1 Data set and simulation parameters
We now compare the finite-time performance of B-KL-UCB with

that of previously proposed algorithms. The simulation parameters,
namely the values of K (the number of arms) and µ (the vector of
reward probabilities), are extracted from a publicly available data
set [1]. The data set describes user queries and displayed ads for a
popular search engine, over the course of one day.

For our purposes, this dataset is a set of keywords, each con-
taining a set of ads. Each ad has been subject to some number
of impressions, a fraction of which have resulted in clicks. These
simulations will use the empirical CTRs based on a keyword from
this dataset. Since the number of ad impressions in the dataset is
heavily skewed, using the click-through rate of an ad with only a
few impressions would be prone to quantization effects (e.g., many
arms with CTRs of exactly 1

2
, 1
3

, . . . ), so we first prune away any ad

with fewer than 100 impressions. The histogram of click-through
rates is shown in Figure 1. Indeed, the CTRs tend to be small. We
filter the keywords present in the data set, and select those which
contain at least 3 ads, 105 total impressions across those ads, and
an overall click-through rate (total number of clicks divided by to-
tal number of impressions) of at least 1%. We chose keyword id
#158 in the dataset, which we will refer to as keyword β. We then
set K to be the number of different ads that have been displayed
when β was requested, and for 1 ≤ k ≤ K, we estimate µk by the
empirical click probability for k, that is the number of clicks on k
divided by the number of impressions for k. We obtain K = 28,
and the values of µ1, ..., µK are shown in Figure 2 and Table 1.

Please note that the data is anonymized, so that each keyword
and each ad is represented as a number, from which it is not possi-
ble to retrieve the actual query or the identity of the advertiser. The
values of the budgets c are not available, so in the simulations to
follow, we extract from the data only the K and µ of keyword β,
and assign an equal budget to every arm. The budget is used as a
parameter in our simulations, since it is unknown.
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Figure 1: Histogram of CTRs for all ads with ≥ 100 impres-

sions, from the KDD Cup dataset.
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Figure 2: Plot of µk vs. k for the 28 ads with keyword β.



0.3153 0.1070 0.0716 0.0417 0.0144 0.0118

0.0099 0.0082 0.0081 0.0050 0.0049 0.0013

Table 1: List of the 12 non-zero entries in µ for keyword β.

6.2 Competing algorithms
We assess the performance of several algorithms identified as

follows:

• B-KL-UCB: The algorithm proposed in this article.

• B-UCB1: The algorithms proposed in [14], [22]. It is noted
that the two algorithms are not identical, but are nearly so.
Roughly, those algorithms behave the same as B-KL-UCB
except that the KL-UCB index bk(n) is replaced by the UCB

index µ̂k(n) +
√

2 log(n)/tk(n). Since they give the same
performance, we only show the performance of one of them
in the interest of readability.

• Balance-BwK (Balance Bandits with Knapsacks): an adap-
tation of the first algorithm proposed in [2] to bandits with
budgets.

• PD-BwK (Primal Dual Bandits with Knapsacks): an adapta-
tion of the second algorithm proposed in [2] to bandits with
budgets.

In the knapsack bandit problem studied in [2], there are multiple
resources and each arm consumes some combination thereof. The
problem terminates when any one of the resources is exhausted.
This is somewhat similar to our problem, where each arm’s bud-
get can be thought of as a resource. However, in our problem,
even if the budget for one of the arms is exhausted, we can con-
tinue to play the other arms. Thus, while the algorithms in [2] do
not directly apply to our model, nevertheless we attempt to modify
those algorithms to fit our model and study how well they perform
compared to our algorithm. In particular, the Balance-BwK and
PD-BwK algorithms we consider here are tuned versions of the
original algorithms proposed in [2], which take into account the
additional structure. Namely, there are fewer unknown parameters
in a problem instance of bandits with budgets than in bandits with
knapsacks, e.g. resource k is known a priori to be consumed only
when arm k is played. For completeness we provide a full descrip-
tion, including pseudo-code, of the tuned versions of Balance-BwK
and PD-BwK in subsection 6.4.

6.3 Numerical results
The regret of each studied algorithm is calculated by averaging

its sample path regret over 4000 independent runs.
First, we investigate the regret Rπ(T ) as a function of the arm

budgets (which determine k⋆). We fix a time horizon of T =
1000K = 28000. We consider uniform budgets so that for all
k and n, ck(n) = cT where c is a parameter. We calculate the
regret as a function of c.

Recall that for large budgets, the problem reduces to the classical
bandit problem (and k⋆ = 1). As budgets decrease, k⋆ transitions
to 2, 3, . . . ,K. We plot the regret of the various algorithms as we
change the budget, in Figure 3 for the CPI model and in Figure 4
for the CPC model. These results show B-KL-UCB out-performs
the other three algorithms across the entire range of k⋆, although
our variant of PD-BwK stays a close second.

Next, we investigate the regret Rπ(T ) as a function of the time
horizon T . In order to fix k⋆ while letting time progress, the bud-
gets must grow linearly with time. Instead of restarting the sim-
ulation with different budgets and time horizons, for simplicity of
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Figure 3: Plot of regret at time T = 28000 vs. the budget Tc
given to each arm, under the CPI model. The dotted vertical

lines demarcate k⋆ transitions.
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Figure 4: Plot of regret at time T = 28000 vs. the budget Tc
given to each arm, under the CPC model. The dotted vertical

lines demarcate k⋆ transitions.

simulation we use incremental budgets (by replacing Tck with nck
in the RHS of the CPI and CPC definitions of ck(n), which removes
all dependence on T ) and a fixed T = 106. For the CPI model, we

present two plots where k⋆ = 6; in Figure 5,
∑k⋆

k=1 ck = 1, and in

Figure 6,
∑k⋆

k=1 ck > 1. Similarly, for the CPC model, we again

set k⋆ = 6 and show two plots; in Figure 7,
∑k⋆

k=1 dk = 1, and in

Figure 8,
∑k⋆

k=1 dk > 1. The results confirm that B-KL-UCB and
PD-BwK again out-perform the other two algorithms, with very
similar regrets. Furthermore, despite our upper bound for the re-

gret not being tight in the
∑k⋆

k=1 dk = 1 case, empirically we do
not see any degradation in performance, suggesting that perhaps
B-KL-UCB is optimal even when the separation assumption is vi-
olated. It should be noted that B-KL-UCB performs at least as well
as both of the modified BwK algorithms, even though the BwK al-
gorithms require knowledge of the time horizon T and B-KL-UCB
does not.
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Figure 6: Plot of regret vs. time, with k⋆ = 6 and
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under the CPI model. Each arm is given the same incremental
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6.4 BwK algorithms
For both BwK algorithms, we use the so-called confidence radius

of an arm

rad (ν,N) =

√

Cradν

N
+

Crad

N
,

where Crad = log (TK (K + 1)), ν stands for the current esti-
mate of the expected reward from the arm, and N stands for the
number of times that the arm has been played so far. We will also
assume the budgets are fixed at the start, so that n 7→ ck(n) is a
constant.

The idea behind Balance BwK is to ensure that the budgets of
the best arms are simultaneously exhausted at T . However, this is
not possible since the µk’s are unknown; therefore, we attempt to
exhaust the budgets simultaneously using the current confidence-
bound adjusted estimates of the µk’s. Specifically, we divide time
into phases of K time slots each, and we do the following at each
the beginning of each phase:
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Figure 7: Plot of regret vs. time, with k⋆ = 6 and
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k=1 dk = 1,

under the CPC model. Each arm is given the same incremental

budget per timestep of 0.00489.
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(i) Based on the current estimates of the rewards of the arms, we
identify the set of best arms, which collectively have enough
budget to be the only arms played. During this process, we
also compute an estimate of the number of times each of these
arms can be played over the time horizon.

(ii) The probability of playing an arm is simply this estimated
number of times it can be played, divided by T .

Now we provide more details about the above computation. To
compute D, first we sort the arms (by decreasing order) based on
their index uk(n), settling ties arbitrarily. Next, we iterate through

this list, assigning probability mass
ck

Ln,k

to Dk. We do so until we

have accumulated probability 1. If the budget of all arms has been
exhausted, assign any remaining probability to the virtual arm with
0 reward and 0 consumption.

The idea behind PD-BwK is to think of each arm’s total budget
as a resource, each with a fictitious “price”, internal to the algo-
rithm. Initially, all of the prices are equal, but as arms are played,



Algorithm 2 Balance-BwK

for each phase p = 0, 1, 2, . . . do

for each arm k = 1, . . . ,K do

compute UCB estimate for the reward vector,
un,k = min {µ̂k(n) + rad (µ̂k(n), tk (n)) , 1}
if model is CPI then

resource consumption vector is known a priori, Ln,k = 1
else if model is CPC then

compute LCB estimate for the resource consumption
vector,
Ln,k = max {µ̂k(n)− rad (µ̂k(n), tk (n)) , 0}

end if

end for

compute a distribution D over arms, described in detail below

for t = 1, . . . ,K do

choose an arm k as an independent sample from D
if k has enough budget remaining then

pull k
else

pull the virtual arm with 0 reward
end if

halt if time horizon is met
end for

end for

their remaining budgets (resources) decrease. As each resource
becomes more scarce, we respond by multiplicatively increase its
price. Additionally, since there is a finite time horizon, the remain-
ing number of time steps is also a resource, with its own price that
increases every time step. We then define the “cost” of playing arm
k to be the expected total price of all resources consumed: the price
of resource k multiplied by the expected consumption of resource
k, plus the price of time (multiplied by one, the number of time
steps that will be consumed). If we knew the µk’s, a greedy pol-
icy approach would be to always play the arm that maximized the
expected reward divided by the expected cost. However, since the
µk’s are unknown, we replace these deterministic quantities (ex-
pected consumption of resource k, expected reward from playing
arm k) by their confidence-bound adjusted estimates. For the CPI
model, we can simplify this and replace the expected consumption
of resource k by 1, since it is known a priori that each play of an
arm reduces the remaining budget by exactly 1. We note that the
way in which prices are increased has to be carefully chosen, and is
a function of the time horizon T . As an implementation detail, we
actually track the logarithm of the prices and use the corresponding
additive update rule, in order to improve numerical stability.

7. CONCLUSION
In this work we have investigated bandits with budgets, which

are a natural model for ad-display optimization encountered in search
engines. We use the same approach as in the study of the classi-
cal bandit: we provide asymptotic regret lower bounds satisfied by
any algorithm, and propose algorithms which match those lower
bounds. For general budgets we have shown that it is possible to
achieve O(log(T )) regret. For CPI and CPC budgets we have pro-
vided regret lower bounds that apply to any uniformly good algo-
rithm. Further, we have shown that B-KL-UCB, a natural vari-
ant of KL-UCB, is asymptotically optimal. Numerical experiments
(based on a real-world data set) further suggest that B-KL-UCB
outperforms previously proposed UCB-like algorithms (by a signif-

Algorithm 3 PD-BwK

set ǫ =
√

log (K + 1) /B, where B = min {T,mink Tck}
in the first K rounds, pull each arm once
initialize the price vector, v1 = 1K+1

for n = K + 1, . . . , T do

for each arm k = 1, . . . ,K do

compute UCB estimate for the reward vector,
un,k = min {µ̂k(n) + rad (µ̂k(n), tk (n)) , 1}
if model is CPI then

resource consumption vector is known a priori, Ln,k = 1
else if model is CPC then

compute LCB estimate for the resource consumption
vector,
Ln,k = max {µ̂k(n)− rad (µ̂k(n), tk (n)) , 0}

end if

end for

yn = vn/
(

1
T vn

)

pull arm j ∈ argmink∈{1,...,K}

{

yK+1 + ykLn,k

un,k

}

vn+1,j = vn,j · (1 + ǫ)Ln,j

vn+1,K+1 = vn,K+1 · (1 + ǫ)
end for

icant margin), so that designing asymptotically optimal algorithms
is not purely a theoretical pursuit and yields schemes with good
finite-time performance. This is of interest when applying those
algorithms to practical problems such as ad-display optimization.
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10. PROOFS

10.1 Ordering lemma
We define the ordered majorization property: given x and y in

R
K , we write x . y iff

∑K

k=1 xk =
∑K

k=1 yk and for all k:
∑k

k′=1 xk′ ≤ ∑k

k′=1 yk′ . In fact, if x and y are taken as el-

ements of the simplex of R
K (so that they represent probability

distributions on {1, . . . ,K}), the ordered majorization property is
equivalent to the strong stochastic order (ordering of c.d.f’s). Also,
consider a ∈ R

K with k 7→ ak non-increasing, then we have that
x . y implies:

∑K

k=1 anxn ≤∑K

k=1 anyn.
The result of Lemma 10.1 states that if the greedy policy π̂ and

an arbitrary policy π are run on the same sample path, then vectors

tπ(n) = (tπ1 (n), . . . , t
π
1 (n)) and tπ

⋆

(n) = (tπ̂1 (n), . . . , t
π̂
1 (n))

satisfy tπ(n) . tπ̂(n) at all time instants n. This ordering prop-
erty has two non-trivial consequences: (i) it allows us to show that
the greedy policy is in fact the optimal policy for general budgets
(including the CPI and CPC case), and (ii) it constitutes the crux of
our regret upper bound in the case of general budgets. Once again
we believe that this is a general property in bandit problems (such
as sleeping bandits) where the set of available arms is time-varying
and might depend on the sample paths, so that Lemma 10.1 could
be useful in analyzing those problems as well, although we have
not explored that possibility here.

LEMMA 10.1. Consider an arbitrary policy π and the greedy

policy π̂, then one has tπ(n) . tπ̂(n) a.s. for all n ≥ 1.

Proof. We proceed by induction. Clearly tπ(0) = (0, 0, . . . , 0) .
tπ̂(0). Define n′ = max{n : tπ(n) . tπ̂(n)}, and assume that
n′ < ∞. Since tπ(n′ + 1) . tπ̂(n′ + 1) is false, we must have
minAπ(n′ +1) > minAπ̂(n′ +1). Define k = minAπ(n′ +1),
so we must have:

k
∑

k′=1

tπk′(n′ + 1) >
k
∑

k′=1

tπ̂k′(n′ + 1),

which implies that there exists k′ ≤ k such that tπk′(n′ + 1) >
tπ̂k′(n′ + 1), so that k′ ∈ Aπ̂(n′ + 1). By definition π̂ selects the
arm minAπ̂(n′ + 1) ≤ k′ ≤ k, which is a contradiction. Hence
such an n′ < ∞ does not exist, which proves the result. ✷

10.2 Proof of Proposition 1
Proof. Consider any policy π such that kπ(n) is Fn−1 measurable.
Define Y π

n = Xkπ(n)(tkπ(n)(n)) the reward observed at time n

and define Mπ
n =

∑n

t=1 Y
π
n −∑K

k=1 µkt
π
k (n). Then (Mπ

n )n is a
martingale:

Mπ
n+1 = Mπ

n +

K
∑

k=1

1{kπ(n) = k}(Y π
n − µk)

E[Mπ
n+1|Fn] = Mπ

n +
K
∑

k=1

1{kπ(n) = k}(µk − µk) = Mπ
n .

so that E[Mπ
T ] = E[Mπ

0 ] = 0. Hence the expected reward of π can
be written as:

E[rπ(T )] =

K
∑

k=1

µkE[t
π
k (T )].

Using Lemma 10.1 , one has tπ(T ) . tπ̂(T ) a.s. Since k → µk is
decreasing we have:

K
∑

k=1

µkt
π
k (T ) ≤

K
∑

k=1

µkt
π̂
k(T ) a.s.

Taking expectations we obtain that E[rπ(T )] ≤ E[rπ̂(T )]. Since
the above reasoning is true for all policies we have proven that π̂ is
the optimal policy which concludes the proof. ✷

10.3 Lower bounds: intermediate results
The following results are instrumental for establishing our regret

lower bounds. Lemma 10.2 is an inequality derived in [27] ( first
noted in [15]), which relates the risk of a hypothesis test between
two point hypotheses to the KL divergence between them. Here P
and Q represent the two probability distributions corresponding to
the two point hypotheses, and the test is taken to be 1{A} with A
an arbitrary event.



LEMMA 10.2 ([27]). Consider two probability measures P
and Q, both absolutely continuous with respect to a given measure.

Denote by KL(P ||Q) the Kullback Leiber divergence between P
and Q. Then for any event A we have:

P (A) +Q(Ac) ≥ (1/2) exp {−min(KL(P ||Q),KL(Q||P ))}

We will be considering change of measure arguments, and in order
to avoid confusion, for a given parameter µ we denote by Pµ and
Eµ the probability and expectation under µ. Given an algorithm
π running on some parametric bandit, Proposition 2 allows us to
calculate the KL divergence of the rewards observed by π, if π
were run on the same bandit problem with parameters µ and λ.

PROPOSITION 2. Consider a bandit problem where the reward

of each arm lies in some parametric family, and denote I(·, ·) the

corresponding KL divergence. Consider a given algorithm π and

a given time horizon T . Denote by Y T = (Y (1), ..., Y (T )) with

Y (n) = Xkπ(n)(t
π
k (n)) the reward from the arm drawn at time n.

Consider two parameters µ and λ, and define P and Q to be the

distributions of Y T under parameters µ and λ respectively. Then

one has:

KL(P ||Q) =

K
∑

k=1

Eµ[t
π
k (T )]I(µk, λk).

Proof. The proof follows from a straightforward conditioning ar-
gument. ✷

Proposition 3 enables us to lower bound the regret of a given
sample path based on the difference on the number of times arm k
is selected by the optimal policy and a given policy π:

PROPOSITION 3. For all 1 ≤ k ≤ K and all policies π we

have the following inequality:

K
∑

k′=1

µk(t
π⋆

k′ (T )− tπk′(T )) ≥ |tπ⋆

k (T )− tπk (T )|∆.

with ∆ = min1≤k′≤K−1(µk′ − µk′+1) > 0.

Proof. This holds as a straightforward consequence of majoriza-
tion. ✷

10.4 Proof of Theorem 4.1
Consider a fixed uniformly good policy π. Consider k > k⋆

fixed, ǫ > 0 fixed and define parameter λ, with λk = µk⋆ + ǫ,
and λk′ = µk′ , k′ 6= k. Define c̃ = min(ck, c), and the event
A = {tπk (T ) ≥ T c̃/2}. Denote by Y T = (Y (1), ..., Y (T )) with
Y (n) = Xkπ(n)(t

π
k(n)) the reward from the arm drawn at time n.

Define P and Q the distributions of Y T under parameters µ and λ
respectively. From Proposition 2 we have:

KL(P ||Q) =

K
∑

k=1

Eµ[t
π
k (T )]I(µk, λk) = Eµ[t

π
k (T )]I(µk, µk⋆+ǫ).

Notice that 1{A} is a function of Y T , and apply Lemma 10.2:

P (A) +Q(Ac) ≥ (1/2) exp[−min(KL(P ||Q),KL(Q||P ))]

≥ (1/2) exp[−KL(P ||Q)],

so by taking logarithms:

Eµ[t
π
k (T )]I(µk, µk⋆+ǫ) ≥ − log(2)−log(P (A)+Q(Ac)). (1)

Let us now upper bound P (A) and Q(Ac). Under parameter µ we

have tπ
⋆

k (T ) = 0, and under λ we have tπ
⋆

k (T ) = T c̃. Applying

Proposition 3 we lower bound the sample path regret as follows:

r(T ) ≥ ∆tπk (T )1{A} Pµ- a.s.

r(T ) ≥ ǫ|c̃− tπk (T )|1{Ac} Pλ- a.s.

We apply Proposition 3 twice, once under parameter µ, and another
time under parameter λ (in this case ∆ equals ǫ). When A occurs,
tπk (T ) ≥ T c̃/2, and when Ac occurs, |c̃ − tπk (T )| ≥ T c̃/2, so
taking expectations:

Eµ[r(T )] ≥ ∆T (c̃/2)P (A)

Eλ[r(T )] ≥ ǫT (c̃/2)Q(Ac)

Since π is uniformly good, Eµ[r(T )] and Eλ[r(T )]must beO(log(T ))
so P (A) and Q(Ac) are O(T−1 log(T )). In turn − log(P (A) +
Q(Ac)) ∼T→∞ log(T ) and replacing in (1) we have that:

lim inf
T→∞

Eµ[t
π
k (T )]

log(T )
≥ 1

I(µk, µk⋆ + ǫ)
.

The reasoning above is valid for any ǫ > 0, letting ǫ → 0 in the
above equation gives the announced result.

✷

10.5 Proof of Theorem 4.2
We proceed as in the proof of Theorem 4.1. Consider a fixed

uniformly good policy π. Consider k > k⋆ fixed, ǫ > 0 fixed and
define parameter λ, with λk = µk⋆ + ǫ, and λk′ = µk′ , k′ 6= k.

Define d̃ = min(dk, d), and the event:

B = ∪K
k=1{|Tdk − τk| ≤ T d̃/(4K)}.

From Lemma B.1 (to be proved in the next section), B occurs w.h.p.
(under both Pµ and Pλ). On all sample paths where B occurs we
have the following inequalities:

T −
k⋆−1
∑

k=1

τk ≥ T (d− d̃/4) ≥ 3T d̃/4,

T −
k⋆
∑

k=1

τk ≤ T (1−
k⋆
∑

k=1

dk + d̃/4) ≤ T d̃/4,

τk ≥ T (dk − d̃/(4K)) ≥ 3T d̃/4.

Define the event A = {tπk (T ) ≥ T d̃/2}. Denote by Y T =
(Y (1), ..., Y (T )) with Y (n) = Xkπ(n)(t

π
k (n)) the reward from

the arm drawn at time n. Define P and Q the distributions of Y T

under parameters µ and λ respectively. From Proposition 2 we
have:

KL(P ||Q) =

K
∑

k=1

Eµ[t
π
k (T )]I(µk, λk) = Eµ[t

π
k (T )]I(µk, µk⋆+ǫ).

Notice that 1{A} is a function of Y T , and apply Lemma 10.2:

P (A) +Q(Ac) ≥ (1/2) exp[−min(KL(P ||Q), KL(Q||P ))]

≥ (1/2) exp[−KL(P ||Q)],

so by taking logarithms:

Eµ[t
π
k (T )]I(µk, µk⋆+ǫ) ≥ − log(2)−log(P (A)+Q(Ac)). (2)

Let us now upper bound P (A) and Q(Ac). First it is noted that

P (A) = P (A∩ B) + P (A∩ Bc) ≤ P (A∩ B) + P (Bc)

= P (A∩ B) +O(T−1).



since B occurs w.h.p. By the same reasoning, Q(Ac) ≤ Q(Ac ∩
B) +O(T−1), so we can restrict our attention to the events A∩B
and Ac ∩ B.

Applying Proposition 3 we lower bound the sample path regret
as follows:

r(T ) ≥ ∆|tπ
⋆

k (T )− tπk(T )|1{A ∩ B} Pµ- a.s.

r(T ) ≥ ǫ|tπ
⋆

k (T )− tπk (T )|1{Ac ∩ B} Pλ- a.s.

Under parameter µ, when event A ∩ B occurs, we have tπ
⋆

k (T ) ≤
T − ∑k⋆

k=1 τk ≤ T d̃/4 and tπk (T ) ≥ T d̃/2. Similarly, under

λ, when event Ac ∩ B occurs, we have tπ
⋆

k (T ) ≥ min(τk, T −
∑k⋆−1

k=1 τk) ≥ 3T d̃/4, and tπk (T ) ≤ T d̃/2. Replacing in the above
inequalities and taking expectations we get:

Eµ[r(T )] ≥ ∆T (d̃/4)P (A ∩ B),
Eλ[r(T )] ≥ ǫT (d̃/4)Q(Ac ∩ B).

Since π is uniformly good, both Eµ[r(T )] and Eλ[r(T )] are
O(log(T )), so that P (A∩B) and Q(Ac∩B) are O(T−1 log(T )).
In turn − log(P (A)+Q(Ac)) ∼T→∞ log(T ) and replacing in (1)
we have that:

lim inf
T→∞

Eµ[t
π
k (T )]

log(T )
≥ 1

I(µk, µk⋆ + ǫ)
.

Since the reasoning above is valid for any ǫ > 0, letting ǫ → 0 in
the above equation gives the announced result.

✷

10.6 Proof of Theorem 5.1
Proof. Consider 0 < ǫ < ∆ fixed. Define d(n) = µkπ⋆

(n) −
µkπ(n), and write the sample path regret as: r(T ) =

∑T

n=1 d(n).

Consider a time instant n such that d(n) > 0. Then 1 ≤ kπ⋆

(n) <
kπ(n) and d(n) ≤ µ1 − µkπ(n), so that:

r(T ) ≤
K
∑

k≥2

(µ1 − µk)|Bk|, (3)

with Bk = {n ≤ T : kπ(n) = k, kπ⋆

(n) ≤ k−1}. Consider n ∈
Bk . From Lemma 10.1, we have that: tπ(n) . tπ

⋆

(n), which im-

plies that minAπ(n) ≤ minAπ⋆

(n) = kπ⋆

(n) ≤ k − 1. There-
fore we have minAπ(n) ≤ k − 1, so that applying Lemma 10.3
we obtain:

E[|Bk|] ≤
f(T )

I(µk + ǫ, µk−1)
+ ǫ−2 + C log(log(T )).

Taking expectations and replacing in (3) we get the announced re-
sult:

Rπ(T ) ≤ f(T )
∑

k≥2

µ1 − µk

I(µk + ǫ, µk−1)
+K(ǫ−2+C log(log(T )))

which concludes the proof. ✷

10.7 Proof of Theorem 5.2
Proof. Recall that for the optimal policy we have: tk(T ) = ckT
for k < k⋆, tk⋆(T ) = cT , and tk(T ) = 0 for k > k⋆. Therefore
the regret of a sample path is:

r(T ) = cTµk⋆ +
k⋆−1
∑

k=1

ckTµk −
K
∑

k=1

µktk(T ).

Using statement (i) of Lemma B.3, we have that tk(T ) = ckT for
k < k⋆ w.h.p., therefore tk⋆(T ) = cT −

∑

k>k⋆ tk(T ) and:

r(T ) = cTµk⋆ −
∑

k≥k⋆

µktk(T ) =
∑

k>k⋆

(µk⋆ − µk)tk(T ) w.h.p.

Taking expectations:

Rπ(T ) ≤
∑

k>k⋆

(µk⋆ − µk)E[tk(T )] +O(1). (4)

Since
∑k⋆−1

k=1 ckT+cT = T , we have that max1≤n≤T (minA(n)) =
k⋆. Hence applying Lemma 10.3, for all k > k⋆ we have:

E[tk(T )] ≤
f(T )

I(µk + ǫ, µk⋆)
+ C(log(log(T )) + ǫ−2).

with C a constant. Replacing in (4) we obtain the announced re-
sult:

Rπ(T ) ≤ f(T )
∑

k>k⋆

µk⋆ − µk

I(µk + ǫ, µk′)
+KC(log(log(T )) + ǫ−2),

= f(T )δǫk⋆ +KC(log(log(T )) + ǫ−2).

which concludes the proof. ✷

10.8 Proof of Theorem 5.3
Proof.

First statement

From Lemma B.2 we have k̃ ∈ {k⋆, k⋆ + 1} w.h.p. Define the
following events:

A = {k̃ = k⋆},
B = {k̃ = k⋆ + 1, tk⋆(T ) = τk⋆},
C = {k̃ = k⋆ + 1, tk⋆(T ) < τk⋆}.

We decompose the regret according to the occurence of A, B or C.
Regret of sample paths in A
First, consider a sample path in A. Define τ̃ = T −∑k⋆−1

k=1 τk.
It is noted that τ̃ ≥ 0. The regret of such a sample path is:

r(T ) = τ̃µk⋆ +
∑

k<k⋆

τkµk −
K
∑

k=1

tk(T )µk.

Using statement (ii) of Lemma B.3 we have tk(T ) = τk for all
k < k⋆, therefore tk⋆(T ) = τ̃ −∑k>k⋆ tk(T ) so that the regret
is:

r(T ) =
∑

k>k⋆

tk(T )(µk⋆ − µk).

Since k̃ = k⋆ we have that max1≤n≤T (minA(n)) = k⋆. Taking
expectations and applying Lemma 10.3:

E[r(T )1{A}]
≤P[A]f(T )δǫk⋆ + CK(log(log(T )) + ǫ−2)

with C a constant.
Regret of sample paths in B
Consider a sample path in B. Define τ̃ = T −∑k⋆

k=1 τk. The
regret is:

r(T ) = τ̃µk⋆+1 +
∑

k≤k⋆

τkµk −
K
∑

k=1

tk(T )µk.



By the definition of B we have tk⋆(T ) = τk⋆ and using statement
(ii) of Lemma B.3 we have tk(T ) = τk for all k < k⋆. Therefore
tk⋆+1(T ) = τ̃ −∑k>k⋆+1 tk(T ) and the regret is:

r(T ) =
∑

k>k⋆+1

tk(T )(µk⋆+1 − µk).

Since k̃ = k⋆ + 1 we have that max1≤n≤T (minA(n)) = k⋆ + 1.
Taking expectations and applying Lemma 10.3:

E[r(T )1{B}]
≤

∑

k>k⋆+1

E[tk(T )1{B}](µk⋆+1 − µk),

≤
∑

k>k⋆+1

P[B](µk⋆+1 − µk)f(T )

I(µk + ǫ, µk⋆+1)
+ ǫ−2 +C log(log(T ))

=P[B]f(T )δǫk⋆+1 +CK(log(log(T )) + ǫ−2)

Regret of sample paths in C
Finally consider sample paths in C. Define τ̃ = T −∑k⋆

k=1 τk.
The regret is:

r(T ) = τ̃µk⋆+1 +
∑

k≤k⋆

τkµk −
K
∑

k=1

tk(T )µk.

Using statement (ii) of Lemma B.3 we have tk(T ) = τk for all
k < k⋆. Therefore tk⋆(T ) = τ̃ + τk⋆ −∑k>k⋆ tk(T ). The regret
is:

r(T ) = τ̃µk⋆+1 + τk⋆µk⋆ −
(

µk⋆ tk⋆(T ) +
∑

k>k⋆

tk(T )µk

)

= τ̃µk⋆+1 + τk⋆µk⋆−
(

µk⋆(τ̃ + τk⋆ −
∑

k>k⋆

tk(T )) +
∑

k>k⋆

tk(T )µk

)

= (µk⋆+1 − µk⋆)τ̃ +
∑

k>k⋆

tk(T )(µk⋆ − µk).

Using the fact that µk⋆+1 − µk⋆ < 0 we have the upper bound:

r(T ) ≤
∑

k>k⋆

tk(T )(µk⋆ − µk).

Since tk⋆(T ) < τk⋆ we have that max1≤n≤T (minA(n)) = k⋆.
Taking expectations and applying Lemma 10.3:

E[r(T )1{C}] ≤
∑

k>k⋆

E[tk(T )1{C}](µk⋆ − µk),

≤
∑

k>k⋆

P[C](µk⋆ − µk)f(T )

I(µk + ǫ, µk⋆)
+ ǫ−2 +C log(log(T ))

= P[C]f(T )δǫk⋆ +CK(log(log(T )) + ǫ−2)

Therefore, defining α(T ) = P[A]+P[C] and noting that P[A]+
P[B]+P[C] ≤ 1 so that P[B] ≤ 1−α(T ), we obtain the announced
result:

Rπ(T ) ≤f(T )(α(T )δǫk⋆ + (1− α(T ))δǫk⋆+1)

+ 3CK(log(log(T )) + ǫ−2).

which proves the first statement of the theorem.
Second statement

Using Lemma B.1, we have that if
∑k⋆

k=1 dk > 1, then
∑k⋆

k=1 τk >

1 w.h.p, so that k̃ = k⋆ w.h.p. Hence P[B] →T→∞ 0 and P[C] →T→∞

0, and letting T → ∞ in the first statement of the theorem yields
the second statement.

✷

10.9 Upper bounds: an intermediate result

LEMMA 10.3. Consider arbitrary budgets. For any policy π,

and k > k′, define the set of instants:

Bπ
k,k′ = {n : k(n) = k, max

1≤n≤T
(minAπ(n)) ≤ k′}.

and consider any event A. Then under policy B-KL-UCB, for all

0 < ǫ < µk′ − µk we have:

E [|Bk,k′ |1{A}] ≤ P[A]
f(T )

I(µk + ǫ, µk′)
+ǫ−2+CK log(log(T )),

with C > 0 a constant.

Proof.

Consider k, k′, ǫ and A fixed. Define t0 = f(T )
I(µk+ǫ,µk′ )

. De-

compose Bk,k′ as:

Bk,k′,1 = {n ∈ Bk,k′ , tk(n) ≤ t0} (i)

B2 = ∪k′′ B̃k′′,2, B̃k′′,2 = {n ≤ T : bk′′(n) < µk′′} (ii)

Bk,k′,3 = {n ∈ Bk,k′ \ B2, tk(n) > t0}. (iii)

and Bk,k′ ⊂ Bk,k′,1 ∪B2 ∪Bk,k′,3.

(i) At each n ∈ Bk,k′,1, tk(n) is incremented and tk(n) ≤ t0,
so |Bk,k′,1| ≤ t0 surely.

(ii) From Lemma A.1, we have E[|B̃k′′,2|] ≤ O(log(log(T )))
for all k′′, so E[|B2|] ≤ O(K log(log(T ))) by union bound.

(iii) Consider n ∈ Bk,k′,3. We are going to prove that we have
|µ̂k(n) − µk| ≥ ǫ. First if µ̂k(n) ≥ µk′ we have |µ̂k(n) −
µk| ≥ ǫ trivially since ǫ < µk′ − µk. Now assume that
µ̂k(n) < µk′ . We have that k(n) = k and there exists k′′ ≤
k′ such that k′′ ∈ A(n) since

minA(n) ≤ max
1≤n≤T

(minA(n)) ≤ k′.

Hence bk(n) ≥ bk′′(n) ≥ µk′′ ≥ µk′ since n 6∈ B2. Fur-
thermore, tk(n) ≥ t0. By the definition of bk(n), this im-
plies:

tk(n)I(µ̂k(n), µk′) ≤ f(T )

t0I(µ̂k(n), µk′) ≤ f(T )

I(µ̂k(n), µk′) ≤ I(µk + ǫ, µk′)

By monotonicity of the KL-divergence, this implies |µ̂k(n)−
µk| ≥ ǫ in this case as well. We have proven that:

Bk,k′,3 ⊂ {n : k(n) = k, |µ̂k(n) − µk| ≥ ǫ}.
so that E[|Bk,k′,3|] ≤ ǫ−2 using [8][Lemma B.2].

Putting it all together:

E[|Bk,k′ |1{A}]
≤E[|Bk,k′,1|1{A}] + E[|B2|1{A}] + E[|Bk,k′,3|1{A}]
≤E[t01{A}] + E[|B2|] + E[|Bk,k′,3|]
≤t0P[A] +O(K log(log(T ))) + ǫ−2,

which proves the announced result.
✷



APPENDIX

A. CONCENTRATION INEQUALITY
The following concentration inequality derived in [11] is instru-

mental here.

LEMMA A.1 ([11]). Consider {X(n)}n≥1 i.i.d. Bernoulli with

parameter µ. Define St = (1/t)
∑t

n=1 X(n), then for all δ > 0
we have that:

P[ sup
1≤t≤T

tI(St, µ) ≥ δ] ≤ 2e⌈δ log(T )⌉e−δ.

By Pinsker’s inequality, I(p, q) ≥ 2(p− q)2 so that for all δ ≥ 0:

P[ sup
1≤t≤T

√
t|St − µ| ≥ δ] ≤ 4e⌈δ2 log(T )⌉e−2δ2 .

B. UPPER BOUNDS: TECHNICAL RESULTS
We present some lemmas which are instrumental for the regret

analysis of B-KL-UCB in the three cases of interest.

LEMMA B.1. For all k and ǫ > 0, we have:

τk/T ∈ [dk − ǫ, dk + ǫ] w.h.p.

Proof. We have to prove that P[τk/T 6∈ [dk − ǫ, dk + ǫ]] =
O(T−1). Using a union bound:

P[τk/T 6∈ [dk−ǫ, dk+ǫ]] ≤ P[τk ≤ T (dk−ǫ)]+P[τk ≥ T (dk+ǫ)].
(5)

Consider the first term in the r.h.s. of (5). The event τk ≤ T (dk−ǫ)
implies:

T (dk−ǫ)
∑

i=1

Xk(i) ≥ Tck,

T (dk−ǫ)
∑

i=1

(Xk(i)− µk) ≥ Tck − T (dk − ǫ)µk = Tǫµk.

Applying Hoeffding’s inequality we obtain:

P





T (dk−ǫ)
∑

i=1

(Xk(i)− µk) ≥ Tǫµk



 ≤ exp

(

−2Tǫ2µ2
k

dk − ǫ

)

.

Consider the second term in the r.h.s. of (5). The event τk ≥
T (dk + ǫ) implies:

T (dk+ǫ)
∑

i=1

Xk(i) ≤ Tck,

T (dk+ǫ)
∑

i=1

(Xk(i)− µk) ≤ Tck − T (dk + ǫ)µk = −Tǫµk.

Applying Hoeffding’s inequality again we obtain:

P





T (dk+ǫ)
∑

i=1

(Xk(i)− µk) ≤ −Tǫµk



 ≤ exp

(

−2Tǫ2µ2
k

dk + ǫ

)

.

Therefore:

P[τk/T 6∈ [dk − ǫ, dk + ǫ]]

≤ exp

(

−2Tǫ2µ2
k

dk − ǫ

)

+ exp

(

−2Tǫ2µ2
k

dk + ǫ

)

= O(T−1)

so τk/T ∈ [dk − ǫ, dk + ǫ] w.h.p., which is the announced result.
✷

LEMMA B.2. In the CPC case, we have k̃ ∈ {k⋆, k⋆+1} w.h.p.

Proof. Define d = 1−∑k⋆−1
k=1 dk. By the definition of k⋆, d > 0.

Applying Lemma B.1 with ǫ = d/(K + 1), we have:

k⋆−1
∑

k=1

τk ≤ T

k⋆−1
∑

k=1

(dk + d/(K + 1))

= T (1− d+ d(k⋆ − 1)/(K + 1)) < T w.h.p.

so k̃ ≥ k⋆ w.h.p.
If k⋆ = K, then k̃ ≤ k⋆ + 1 trivially. Otherwise, by the same

reasoning, define d = (
∑k⋆+1

k=1 dk) − 1. By the definition of k⋆,
d > 0. Applying Lemma B.1 with ǫ = d/(K + 1), we have:

k⋆+1
∑

k=1

τk ≥ T

k⋆+1
∑

k=1

(dk − d/(K + 1))

= T (1 + d− d(k⋆ + 1)/(K + 1)) > T w.h.p.

so k̃ ≤ k⋆ + 1 w.h.p.
Therefore k̃ ∈ {k⋆, k⋆ + 1} w.h.p. which concludes the proof.

✷

LEMMA B.3. Consider algorithm B-KL-UCB.

(i) In the CPI case, for all k < k⋆ we have tk(T ) = ckT w.h.p.

(ii) In the CPC case, for all k < k⋆ we have tk(T ) = τk w.h.p.

Proof.

First consider the CPC case. Consider k < k⋆ fixed, and con-
sider the event A = {tk(T ) < τk}. Consider k′ > k. Using
Lemma A.1 (first statement) with δ = f(T ) we have that for all
1 ≤ n ≤ T : bk(n) ≥ µk w.h.p. Using Lemma A.1 (second state-
ment) with δ = 2 log(T ) we have that:

µ̂k′(n) ≤ µk′ +
√

2 log(T )/tk(n) w.h.p.

Using Pinsker’s inequality:

bk′(n) ≤ µ̂k′(n) +

√

2 log(T )

tk′(n)
,

so that:

bk′(n) ≤ µk′ +

√

8 log(T )

tk′(n)
w.h.p.

Since k′ is only selected at instants n such that bk′(n) ≥ bk(n),
this implies that:

tk′(T ) ≤ 8 log(T )

(µk − µk′)2
w.h.p. (6)

Define d =
∑k⋆−1

k′=1 dk′ . We have d < 1 by the definition of k⋆.

If tk(T ) < τk , from Lemma B.1, we have that
∑k⋆−1

k′=1 τk′ ≤
T (1 + d)/2 w.h.p. Using (6) we obtain that:

T =
K
∑

k′=1

tk′(T ) ≤
∑

k′≤k

τk′ +
∑

k′>k

tk′(T )

≤
k⋆−1
∑

k′=1

τk′ +
∑

k′>k

tk′(T ) ≤ T (1 + d)

2
+O(log(T )) < T w.h.p.

for large T , a contradiction (recall that d < 1 so that (1 + d)/2 <
1). Therefore A occurs with small probability, and for all k < k⋆,
tk(T ) = τk w.h.p., which concludes the proof.

The proof in the CPI case follows from the same argument.
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