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Abstract

Mécanismes auto-organisants dans les
réseaux sans fil

Résumé

Dans cette thèse on étudie la mise au point, la modélisation et la performance
de mécanismes (dits auto-organisants) pour gérer les réseaux sans fils de façon
autonome. Le contexte technologique est rappelé, et les outils mathéma-
tiques nécessaires sont introduits succinctement: théorie des files d’attente,
processus ponctuels, théorie de l’information, approximation stochastique,
processus de décision markoviens et apprentissage par renforcement.

Dans une première partie, on s’intéresse à l’évaluation de performance des
ordonnanceurs opportunistes, et à leur utilisation pour l’optimisation capac-
ité/couverture. Les phénomènes de la couche physique tels que l’évanouissement
rapide du canal, les interférences, la structure du récepteur et les schémas de
modulation et codage pratiques sont pris en compte.

Dans la deuxième partie, un mécanisme d’équilibrage de charge automa-
tique prenant en compte les arrivées et départs des utilisateurs est présenté.
Pour un trafic stationnaire, sa convergence vers l’optimum est prouvée par
une technique d’approximation stochastique. Pour un trafic non station-
naire, des expériences numériques suggèrent que la méthode est capable de
s’adapter aux variations de trafic journalières.

Dans une troisième partie, on s’intéresse aux réseaux avec relais. Une
formule analytique simple basée sur la théorie des files d’attentes est proposée
pour leur dimensionnement. La formule est valable pour le modèle de trafic le
plus général (stationnaire ergodique). Le mécanisme d’équilibrage de charge
est étendu pour prendre en compte les relais. Une méthode d’équilibrage de
charge dynamique utilisant l’apprentissage par renforcement est étudiée.
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Mots-clefs

réseaux sans fils, réseaux cellulaires, auto-organisation, auto-configuration,
auto-optimisation, auto-réparation, théorie des files d’attente, processus ponctuels,
théorie de l’information, approximation stochastique, processus de décision
markoviens, apprentissage par renforcement

Self-organizing mechanisms in wireless
networks

Abstract

In this thesis we study the design, modeling and performance evaluation of
mechanisms which can manage wireless networks autonomously (self-organizing
mechanisms). We recall the technological context, and the required mathe-
matical tools are introduced concisely: queuing theory, point processes, in-
formation theory, stochastic approximation, Markov decisions processes and
reinforcement learning.

In the first part, we study opportunistic scheduling. We are interested
in their performance evaluation and their use to perform coverage-capacity
optimization. Physical layer phenomena such as channel fading, interference,
receiver structure and practical modulation and coding schemes are taken
into account.

In the second part, an algorithm for automatic load balancing is pre-
sented. The dynamical arrivals and departures of users are taken into ac-
count. For stationary traffic, the convergence of the mechanism to the op-
timal configuration is shown using stochastic approximation theorems. For
non-stationary traffic, numerical experiments suggest that the mechanism is
able to adapt itself to daily traffic patterns.

In the third part, we study relay-enhanced networks. Based on a queuing
analysis, a simple formula for network dimensioning is given. It is valid for
the most general traffic model (stationary ergodic input). The load balanc-
ing mechanism is extended to relay-enhanced networks. A dynamical load
balancing algorithm based on reinforcement is studied.
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Résumé en francais

Dans cette thèse on étudie la mise au point, la modélisation et la performance
de mécanismes (dits auto-organisants) pour gérer les réseaux sans fils de façon
autonome.

Un réseau auto-organisant (“Self-Organizing Network” ou SON, en anglais)
est un réseau capable de se gérer lui-même de façon autonome sans l’aide
d’un opérateur humain. La gestion du réseau comporte toutes les tâches
effectuées à l’heure actuelle par des ingénieurs réseaux. Ces tâches sont: le
déploiement et la configuration de nouveaux noeuds du réseau, l’optimisation
des paramètres, la maintenance et la réparation des pannes. Les ingénieurs
utilisent des mesures rapportées par les stations de base et des sondes placées
sur certaines interfaces du réseau. Des indicateurs de performance et des
alarmes sont générés à partir de ces mesures. L’optimisation est généralement
assistée par des outils d’aide à la décision. Un réseau SON doit être capable
de s’auto-configurer, s’auto-optimiser et de s’auto-réparer. Les organismes
de standardisation tels que 3GPP (3rd Generation Partnership Project) et
de pré-standardisation tels que NGMN (Next Generation Mobile Network)
ont identifié le SON comme un élément clé des réseaux futurs. Dans le cadre
des réseaux mobiles, les cas d’étude les plus importants pour le SON ont été
identifiés: la gestion des interférences inter-cellules, l’équilibrage de charge,
la mobilité robuste, et la réduction de la consommation d’énergie par les
équipements. Les algorithmes SON seront implémentés dans les équipements
du réseau, ce qui impose plusieurs limitations. Les algorithmes doivent être
distribués, nécessiter une faible puissance de calcul, être tolérants aux délais,
nécessiter peu d’échanges d’information de signalisation, et être robustes au
bruit.

Dans un chapitre préliminaire, les outils mathématiques nécessaires pour
la mise au point, la modélisation, l’analyse et l’évaluation de performance
des mécanismes auto-organisants dans les réseaux sont traités. Les outils
utilisés sont: la théorie des files d’attente et des processus ponctuels, la
théorie de l’information, l’approximation stochastique, les processus de dé-
cision markoviens et l’apprentissage par renforcement. La théorie des files
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d’attente nous permet de modéliser le comportement du réseau en prenant
en compte les arrivées et départs dynamiques des utilisateurs. Prendre en
compte le comportement dynamique du réseau est fondamental pour l’étude
des mécanismes SON. En y ajoutant la théorie des processus ponctuels, nous
pouvons prendre en compte des processus d’arrivées aussi généraux que pos-
sible grâce au théorème de Loynes. Nous pouvons ainsi développer des al-
gorithmes SON valables avec peu d’hypothèses sur le modèle de trafic sous-
jacent. La théorie de l’information est introduite afin d’évaluer la perfor-
mance du réseau au niveau lien, c’est à dire quand une seule station de base
est présente et que les utilisateurs sont immobiles. Les phénomènes de la
couche physique tels que l’évanouissement rapide du canal, les interférences,
la structure du récepteur et les schémas de modulation et codage pratiques
sont pris en compte. Cette base théorique nous servira pour la modélisation et
l’évaluation de performance des ordonnanceurs opportunistes. On introduit
ensuite la théorie de l’approximation stochastique, qui établit un lien entre
certains algorithmes itératifs en présence de bruit, et une équation différen-
tielle ordinaire. Un lien précis existe entre le comportement de l’algorithme
et certains ensembles limites de l’équation différentielle. L’intérêt de cette
approche est que l’équation différentielle est purement déterministe et plus
simple à analyser que l’algorithme itératif qui est un processus stochastique.
L’approximation stochastique est essentielle pour l’analyse de la convergence
des algorithmes SON qui sont des algorithmes itératifs en présence de bruit.
Ce bruit est lié au fait que les algorithmes SON se basent sur des mesures.
On peut alors démontrer de façon élégante que ces algorithmes convergent,
même en présence de bruit. Finalement, les processus de décision markoviens
sont traités. La technique d’uniformisation qui permet de réduire un proces-
sus de décision semi-markovien (en temps continu) à un processus de déci-
sion markovien en temps discret est décrite. L’apprentissage par renforce-
ment, qui consiste à trouver le contrôle optimal d’un processus de décision
markoviens sans connaitre les probabilités de transition est introduit. On
s’intéresse en particulier aux techniques d’approximation de politiques, qui
permettent d’utiliser l’apprentissage par renforcement pour des problèmes
de grande dimension. L’apprentissage par renforcement est appliqué pour
allouer dynamiquement les ressources dans un réseau avec relais.

Dans une première partie, on s’intéresse à l’évaluation de performance
des ordonnanceurs opportunistes, et à leur utilisation pour l’optimisation
capacité/couverture. On étudie le modèle classique dans lequel un nombre
fixe d’utilisateurs est servi par une station de base, et possède un nombre
infini de paquets à transmettre. Ce modèle est dit “full-buffer”. La station
connait l’état du canal de chacun des utilisateurs et décide dynamiquement
quel utilisateur peut transmettre. On considère une famille d’ordonnanceurs
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dite α-équitable. Cette famille comprend en particulier l’équité proportion-
nelle (α = 1), l’équité min-max (α → +∞) et la maximisation de la somme
des débits (α = 0). La convergence de l’algorithme est étudiée en utilisant
l’approximation stochastique. La preuve est une généralisation de la preuve
de convergence dans le cas particulier de l’équité proportionnelle. On cal-
cule les débits moyens alloués par l’ordonnanceur aux utilisateurs à l’aide de
formules analytiques. Les cas étudiés sont α ∈ {0, 1, +∞}. Pour la plupart
des modèles de canal rencontrés dans les réseaux opérationnels, une formule
analytique est donnée. Par exemple: réseaux OFDMA (par exemple LTE),
réseaux CDMA (par exemple 3G et HSPA), réseaux MIMO-OFMDA (par
exemple LTE-Advanced). Finalement, on étudie un mécanisme SON perme-
ttant de changer la stratégie d’ordonnancement dynamiquement (la valeur de
α) pour optimiser la qualité de service d’un réseau. On considère un modèle
dans lequel les utilisateurs arrivent et repartent dynamiquement. Durant les
périodes de congestion, la valeur de α augmente pour s’assurer que tous les
utilisateurs atteignent un débit cible. Les utilisateurs qui n’atteignent pas
ce débit cible sont coupés. Une étude numérique à l’aide d’un simulateur
de réseau dynamique montre que le mécanisme proposé permet de réduire la
probabilité de coupure au prix d’une faible perte de débit global du réseau.

Dans la deuxième partie, un mécanisme d’équilibrage de charge automa-
tique prenant en compte les arrivées et départs des utilisateurs est présenté.
On considère un trafic élastique pour le lien descendant, dans lequel les util-
isateurs téléchargent une quantité de données finie et aléatoire et quittent
le réseau ensuite. Ce modèle de trafic décrit les applications de données
telles que le trafic web (HTTP) et transfert de fichiers (FTP). Les utilisa-
teurs s’attachent à la station dont le signal pilote reçu est le plus fort. Les
résultats de la théorie des files d’attente permettant le calcul de la perfor-
mance stationnaire du système sont rappelés. Les stations de base n’ont pas
de connaissances sur le modèle de trafic et la géométrie du réseau et utilisent
des mesures remontées par les utilisateurs arrivant dans le réseau pour es-
timer leurs charges. Les propriétés statistiques des estimateurs de charge
sont étudiées. Basé sur ces charges estimées, un mécanisme d’équilibrage de
charge est proposé. Les stations les plus chargées réduisent leur puissance
pilote transmise, ce qui réduit la zone qu’elles servent, diminue leur charge
et permet à leurs voisines de les décharger. Une station, par exemple la plus
chargée, est définie comme station de référence, et diffuse sa charge estimée
aux autres stations. Les stations calculent la différence entre leur charge et
la charge de la station de référence et augmentent leur puissance transmise
de façon proportionnelle à cette différence. La convergence du mécanisme
d’équilibrage est étudiée grâce à l’approximation stochastique. On montre
que l’équation différentielle associée converge vers un état dans lequel toutes
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les stations ont la même charge, et que cet état est stable au sens de Lya-
punov. Une extension possible au trafic à débit constant (services voix et
streaming) est décrite. Des expériences numériques suggèrent que le mé-
canisme d’équilibrage converge suffisamment rapidement pour s’adapter aux
variations journalières du trafic. Les aspects pratiques du mécanisme sont
également abordés: échelles de temps, fréquence de mise à jour, charge de
signalisation, tolérance aux délais.

Dans une troisième partie, on s’intéresse aux réseaux avec relais. Comme
dans la partie précédente on considère un réseau servant du trafic élastique,
pour le lien descendant. Les relais sont des noeuds du réseau qui n’ont pas de
lien filaire avec le coeur de réseau, et sont raccordés à une station de base par
un lien sans fil. Quand un utilisateur est servi par un relai, les données qu’il
reçoit passent par un lien station-relai, puis par le lien relai-utilisateur. Les
ressources radio sont partagées entre les liens directs (stations-utilisateurs et
relais-utilisateurs) et les liens dits “backhaul” (liens stations-relais). Une for-
mule analytique simple basée sur la théorie des files d’attentes est proposée
pour leur dimensionnement. La formule est valable pour le modèle de trafic le
plus général (stationnaire ergodique). L’influence du placement des relais sur
le gain de capacité est étudiée. Un résultat important est qu’un déploiement
anarchique des relais peut diminuer de façon notable la capacité du réseau. Le
mécanisme d’équilibrage de charge étudié dans la seconde partie est généralisé
pour prendre en compte les relais. Deux paramètres sont ajustés simultané-
ment: la puissance pilote transmise par les relais qui contrôle la zone servie
par ceux-ci et la quantité de ressources allouées aux liens backhaul. La con-
vergence est prouvée en utilisant une approche d’approximation stochastique
avec échelles de temps multiples. Finalement, le problème d’allocation de
ressources est modélisé comme un processus de décision Markovien. Cela
permet d’adapter le réseau à la position instantanée des utilisateurs actifs
plutôt qu’à la charge qui représente la performance moyenne du système.
Une famille de politiques dont la performance est proche de l’optimum est
introduite. Un mécanisme d’apprentissage par renforcement est étudié, pour
trouver la meilleure politique. L’intérêt de l’apprentissage par renforcement
est que il n’est pas nécessaire de connaitre la dynamique du système c’est à
dire les probabilités de transition, qui dépendent de l’intensité du trafic et
de sa répartition spatiale. De plus, le mécanisme d’apprentissage fonctionne
pour une large classe de processus d’arrivée et n’est pas limité au cas où le
trafic suit un processus de Poisson.

En conclusion, les perspectives futures ouvertes par ces travaux sont abor-
dées, notamment le problème de la coordination de mécanismes SON multi-
ples fonctionnant en parallèle.



Contents

1 Introduction 19
1.1 The SON concept . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Autonomic network management . . . . . . . . . . . . 19
1.1.2 SON in standards . . . . . . . . . . . . . . . . . . . . . 21

1.2 Challenges for SON in wireless networks . . . . . . . . . . . . 23
1.2.1 The key use cases . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Requirements for SON solutions . . . . . . . . . . . . . 25

1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 Content and methodology . . . . . . . . . . . . . . . . 28
1.3.2 Organization . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Theoretical foundations 31
2.1 Queuing theory . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Point processes . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Classical queues . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Information theory . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.1 Source coding theorem . . . . . . . . . . . . . . . . . . 38
2.2.2 Noisy channel coding theorem . . . . . . . . . . . . . . 42
2.2.3 Continuous channels . . . . . . . . . . . . . . . . . . . 45
2.2.4 Channel models . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Stochastic approximation . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 The ODE approach . . . . . . . . . . . . . . . . . . . . 53
2.3.3 Martingale difference noise: decreasing step sizes . . . . 56
2.3.4 Martingale difference noise: constant step sizes . . . . . 56
2.3.5 Correlated noise: decreasing step sizes . . . . . . . . . 57
2.3.6 Correlated noise: constant step sizes . . . . . . . . . . 59

2.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 Markov decision processes . . . . . . . . . . . . . . . . 60
2.4.2 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . 63

13



14 CONTENTS

2.4.3 Policy search approach . . . . . . . . . . . . . . . . . . 64
2.4.4 Continuous time models . . . . . . . . . . . . . . . . . 69
2.4.5 Semi-Markov decision processes . . . . . . . . . . . . . 70

3 Packet scheduling 73
3.1 Channel-aware scheduling . . . . . . . . . . . . . . . . . . . . 74

3.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1.2 α-fair scheduling . . . . . . . . . . . . . . . . . . . . . 76

3.2 Convergence of α-fair schedulers . . . . . . . . . . . . . . . . . 78
3.2.1 The mean ODE . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Convergence to a unique limit . . . . . . . . . . . . . . 79

3.3 Calculation of scheduling gain . . . . . . . . . . . . . . . . . . 82
3.3.1 Rayleigh-fading AWGN . . . . . . . . . . . . . . . . . . 82
3.3.2 Multi-tap Rayleigh-fading AWGN . . . . . . . . . . . . 84
3.3.3 MIMO Rayleigh-fading AWGN . . . . . . . . . . . . . 87

3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1 Rayleigh-fading AWGN . . . . . . . . . . . . . . . . . . 88
3.4.2 Multi-tap Rayleigh-fading AWGN . . . . . . . . . . . . 90
3.4.3 MIMO Rayleigh-fading AWGN . . . . . . . . . . . . . 91

3.5 Coverage-capacity optimization . . . . . . . . . . . . . . . . . 93
3.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.2 Admission Control . . . . . . . . . . . . . . . . . . . . 96
3.5.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . 97

4 Load balancing 101
4.1 Flow-level dynamics . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Traffic model . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.2 Load estimation . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Load balancing mechanism . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Update equation . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 The mean ODE . . . . . . . . . . . . . . . . . . . . . . 105
4.2.3 Convergence of the load balancing mechanism . . . . . 106
4.2.4 Extension to constant data rate traffic . . . . . . . . . 107

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 108
4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . 109
4.4.2 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . 109
4.4.3 Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.4 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . 113
4.4.5 Proof of theorem 4.5 . . . . . . . . . . . . . . . . . . . 115



CONTENTS 15

5 Relay networks 117
5.1 Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.2 System capacity . . . . . . . . . . . . . . . . . . . . . . 120
5.1.3 Relay gain . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.4 Numerical experiments . . . . . . . . . . . . . . . . . . 122

5.2 Self-Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Traffic estimation . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 Traffic balancing for the backhaul . . . . . . . . . . . . 127
5.2.3 Coordination between backhaul and cell sizes . . . . . 128
5.2.4 Numerical experiments . . . . . . . . . . . . . . . . . . 129

5.3 Dynamic resource allocation . . . . . . . . . . . . . . . . . . . 130
5.3.1 Infinite buffer case: stabilizing policy . . . . . . . . . . 130
5.3.2 Finite buffer case: MDP formulation . . . . . . . . . . 132

5.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4.1 Policy gradient approach . . . . . . . . . . . . . . . . . 138
5.4.2 Convergence to a local optimum . . . . . . . . . . . . . 138
5.4.3 Implementation issues: traffic and scalability . . . . . . 140
5.4.4 Numerical experiments . . . . . . . . . . . . . . . . . . 140

5.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.1 Proof of theorem 5.1 . . . . . . . . . . . . . . . . . . . 141
5.5.2 Traffic estimation . . . . . . . . . . . . . . . . . . . . . 143
5.5.3 Proof of theorem 5.2 . . . . . . . . . . . . . . . . . . . 145
5.5.4 Proof of theorem 5.3 . . . . . . . . . . . . . . . . . . . 147

6 Conclusion and future work 151

7 Appendices 153
7.1 Simulation methodology . . . . . . . . . . . . . . . . . . . . . 153
7.2 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Index 159

Bibliography 163



16 CONTENTS



Notations

The following notations are used in this thesis:
N set of positive integers
Z set of integers
R set of real numbers
P [.] probability
E [.] expectation
var(.) variance
⊥⊥ independence of random variables
d= equality of random variables in distribution
a.s→ almost sure convergence
P→ convergence in probability
d→ convergence in distribution

L2→ convergence in mean square
‖.‖ Euclidean norm
〈. , .〉 (Euclidean) scalar product
.H conjugate transpose

‖f‖L2 =
√

∑

t∈N|f [t]|2 L2 norm
〈f , g〉L2 =

∑

t∈N f [t]Hg[t] L2 inner product
|A| = ∫

A dr Lebesgue measure (with A Borel set)
N (µ, σ2) Gaussian distribution with mean µ

and variance σ2
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Chapter 1

Introduction

In this chapter we define the Self-organizing networks (SON) concept and
why it currently represents a key problem for both industrials and researchers
in the field of networking. We highlight the key use cases as far as wireless
networks are concerned and the requirements for the adoption at a large scale
of the SON technology by industry and network operators.

1.1 The SON concept

1.1.1 Autonomic network management

The concept of SON comes from network management. Network manage-
ment is composed of all the tasks necessary to the deployment of networks,
their daily optimization, and the detection and correction of faults. Network
management is performed daily by network engineers, and is highly complex
and costly.

− Node deployment and configuration tasks generally includes hardware
installation, setup of transport interfaces between the new node and
the existing network, setup of a secure tunnel to gateways and the Op-
eration and Maintenance Center (OMC), download of software needed
for the node operation, download of configuration files, authentication
of the new node and tests before the node can be fully operational.

− Optimization is done when poor performance is observed, e.g coverage
holes, congestion, dropped calls, and concerns parameters which have
a strong impact on the network performance. Optimization is done
by network engineers, based on measurements. Measurements are per-
formed by network users, and are sent to the OMC by either the Base
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20 CHAPTER 1. INTRODUCTION

Stations (BSs) or probes installed on specific network interfaces. En-
gineers typically rely on optimization software. In the case of wireless
networks, the optimized parameters include antenna tilts, frequency
planning, transmitted powers, handover parameters and resources al-
located to random access channels.

− Maintenance and troubleshooting are done similarly to optimization,
based on node measurements, customer complaints and field measure-
ments e.g drive tests. Troubleshooting consists of fault detection, fault
diagnosis and fault repair and is done on a daily basis. It includes alarm
processing, update of obsolete software and hardware at the nodes. A
major task is to detect, compensate and/or mitigate the effect of out-
ages at the nodes.

The goal of SON is to enable network management tasks to be performed
autonomically. An automatic process involves a computing entity working
under the supervision of a human operator whom inspects its output and
takes decisions, while an autonomous process is able to work without any
human intervention if it has been properly set up. SON is generally di-
vided into three sub-fields: self-configuration (autonomic deployment and
configuration), self-optimization (autonomic optimization), and self-healing
(autonomic troubleshooting). A fully autonomic configuration is mandatory
when deploying femto-cells, which are low power nodes deployed directly in
subscribers’ houses, since most subscribers are not skilled network engineers.
Another motivation for the introduction of SON is the fact that currently
deployed networks might not work to their full potential, which could be
achieved by better optimization techniques, with a finer granularity. It rep-
resents an alternative to deploying more equipment in order to cope with the
rising traffic demand. It might be much less costly if SON features can be
implemented as software features, without the need to buy and deploy new
equipment.

It must be made clear that SON features are not a set of sophisticated
Radio Resource Management (RRM) algorithms. RRM algorithms take de-
cisions such as: admission of new calls, scheduling and resource allocation,
power control, handover of mobile users and so on. It should be noted that
RRM algorithms work in a fully autonomic manner. SON features work on
a slower time scale in order to control and optimize the parameters of RRM
algorithms, with higher level objectives such as block call rate, drop call rate,
BS load and cell edge throughput.
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1.1.2 SON in standards

Standardization bodies such as the 3rd Generation Partnership Project (3GPP)
and pre-standardization bodies such as Next Generation Mobile Network
(NGMN) have recognized the importance of SON in wireless networks. They
have described the requirements and the key use cases from both a vendor
and operator point of view. It is noted that standardization bodies do not
discuss algorithmic aspects of SON, and focus on architecture, use cases and
associated performance requirements. It is highly likely that algorithms will
remain proprietary, since they are one of the main differentiation elements
for vendors. It remains unclear whether SON performance can still be en-
sured in a multi-vendor setting where SONs from multiple vendors run in
parallel and interact. NGMN is an alliance comprising major operators, and
has reported a list of the key use cases that can be found in [49, 48]. One
key requirement from their point of view is the seamless coexistence between
SON-enabled networks and legacy networks, and the ability of SON to work
in a multi-vendor, multi-technology environment.

3GPP gives the main requirements for SON in [6]. Requirements for
self-configuration and self-healing can be found in [5] and [7] respectively.
Requirements for self-optimization as well as use cases are described in [4].

Table 1.1 presents the time line of the introduction of the main SON
features by the 3GPP in the Long Term Evolution (LTE) standard.
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1.2 Challenges for SON in wireless networks

In this thesis we focus mainly on self-optimization, which represents the most
challenging aspect of SON. Self-configuration features are already present
in deployed networks, while self-optimization is still problematic. Network
operators are indeed reluctant to leaving the control of sensitive network
parameters to algorithms without strong guarantees on their performance
and stability. We highlight the key SON use cases in wireless networks, and
describe what constitutes, in our opinion, the main requirements for adoption
of the SON technology by network operators.

1.2.1 The key use cases

ICIC

In dense wireless networks, inter-cell interference strongly limits capacity
and quality of service, and mechanisms to control interference are needed.
There are various methods for Inter-Cell Interference Coordination (ICIC).
At the physical layer, approaches based on multi-user detection, beamform-
ing and interference alignment and Multiple Input Multiple Output (MIMO)
have been studied. At the Medium Access Control (MAC) layer, introducing
coordination between BSs to enable scheduling decisions to take into account
multiple cells are promising. On a slower time scale, approaches based on
frequency reuse other than reuse 1 have been shown to provide apprecia-
ble capacity gains. SON mechanisms adjust the parameters of those ICIC
schemes to maximize the network Quality of Service (QoS).

Load balancing

In operational networks, due to irregular cell planning and/or to inhomoge-
neous traffic (hot-spots), some cells tend to be heavily congested while others
experience low to medium loads. In such scenarios, a good load balanc-
ing mechanism can improve the network performance appreciably, especially
since the performance of a network is not evaluated as the average perfor-
mance of its cells, but rather as the performance of the most congested cells.
At the MAC layer, load balancing can be achieved by intelligent user asso-
ciation. Namely, when a user enters the network, it might be beneficial not
to attach him to the best serving BS if this BS already has a large number
of active users, but rather to attach him to a station which might be farther,
but is almost empty. At a slower time scale, load balancing can be achieved
by adjusting cell sizes. We reduce the size of congested cells so that they
serve less traffic, and let their less loaded neighbors serve more traffic. If



24 CHAPTER 1. INTRODUCTION

users attach themselves to the BS with the strongest received pilot power,
this can be done by reducing the transmitted pilot powers of the most con-
gested cells. Alternatively, the handover margins can be modified to produce
a similar effect.

Mobility robustness

When mobile users leave the coverage area of their current serving BSs, they
must be handed over to another cell or else they will lose connection and
their call will be dropped. The user computes the difference of received
pilot powers between his currently serving BS and the BS with the strongest
pilot power, and if this difference is larger than a threshold called handover
margin, then it attempts a handover. In order to avoid a large amount
of successive handover between two neighboring BSs, a hysteresis period
called time to trigger is introduced. It turns out that the values of handover
margins and time to trigger have a critical impact on the system performance.
In particular, a large amount of dropped calls are due to improper values of
those two parameters. From the point of view of the operator, a dropped call
is possibly the worst event as far as user perceived QoS is concerned (worse
than a blocked call), which is why mobility robustness has been identified as
a key use case.

Energy savings

Recent studies have shown that wireless access networks have become one
of the main consumers of energy for operators, which aroused their interest
in so-called green networking in which energy is considered a scarce resource
and the objective is to minimize the required energy per successfully received
bit, rather than maximizing the number of successfully received bits. One
approach is to do so is BS sleep mode: a fraction of BSs can be switched
off when the traffic demand is low and QoS can be ensured with a smaller
number of BSs than the number of deployed BSs. SON comes into play
because BSs must be switched off autonomically, based on traffic measure-
ments. The parameters of the sleep mode algorithms must tuned carefully
in order to avoid creating outage by switching off too many BSs. The sleep
mode approach was shown to have especially good performance in Hetero-
geneous Networks (HetNets), where low power nodes (micro-cells, pico-cells,
femto-cells) are deployed in a traditional macro-cell network. Low power
nodes are switched on and off dynamically and enable significant reduction
of the energy consumption. Standardization activity in 3GPP on this subject
can be found in [2].
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Use case Parameters Performance indicators
ICIC Transmitted powers Network capacity, cell-edge throughput

blocking rate, outage rate
Load balancing Pilot powers Network capacity, cell-edge throughput

Handover margins blocking rate, outage rate
Mobility robustness Handover margins, Dropped call rate,

time-to-trigger radio link failures
Energy savings Transmitted powers Energy consumption

BS deactivation

Table 1.2: The key SON use cases

Drive test minimization

When a problem has been identified in a zone of the network, technicians
may need to conduct a drive test to obtain field measurements with precise
localization information, and find the root of the problem. Since this is costly
and tedious, and more and more current mobile terminals are equipped with
a Global Positioning System (GPS) to provide accurate localization informa-
tion, it has been suggested to transmit and store mobile measurements and
their localization in a database as an alternative to drive tests. One of the
possible applications of this database is to build maps of the radio environ-
ment (Radio Environment Maps (REMs)) in which the signal attenuation
between any BS and any location is available. An accurate REM could be
used to perform efficient optimization. The drive test minimization is treated
by 3GPP in [1].

Table 1.2 presents the key SON use cases in a synthetic form.

1.2.2 Requirements for SON solutions

We highlight what we feel constitutes the main requirements for SON so-
lutions to be adopted by network operators. We have tried to fulfill those
requirements throughout this thesis work.

Control plane solutions

The most important requirement is that the SON algorithms should run in
the control plane, i.e directly in the network equipment such as routers and
BSs. Running SON algorithms in the control plane imposes the constraint
that the SON solutions can be implemented in a distributed manner, in which
each network node can control its own parameters and make decisions based
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on locally available information. An important advantage of this approach is
that it enables to react to traffic variations on the time scale of minutes to tens
of minutes. Human network operators cannot react on this time scale, which
is why SON is expected to bring gains in this respect. Another important
advantage of control plane solutions is to enable optimizing the network at
a much finer granularity than what is currently feasible. Namely, in current
networks, engineers can at best optimize a critical network parameter for a
group of BSs. Some parameters might be technically impossible for a human
operator in the OMC to adjust on a per BS basis. Even when the technical
possibility exists, optimizing every parameter on a BS is so tedious and time
consuming that it might not be feasible in practice. A network with SON
mechanisms in the control plane could easily optimize a critical network
parameter on a per BS basis. The main goal of SON is to enable optimizing
a network at a much finer granularity than what can currently be done even
by the most competent engineers, both in time and space. Running SON
algorithms in the management plane i.e the OMC, would not enable to take
decisions with such a fine granularity , and would sacrifice some of the gains
to be expected from SON.

Stability

From the point of view of the network operator, giving SON algorithms
complete control over critical network parameters with little or no means of
monitoring and supervising the decisions they take might appear as a huge
risk. On the other hand, many real-world systems where failure cannot be
tolerated are controlled by algorithms, such as nuclear plants, planes and
helicopters. The point is that network operators need very strong guarantees
on the functioning of SON algorithms in order to accept taking the risk of
deploying a SON-enabled network. One way to provide such guarantees is by
providing mathematical proofs of convergence and stability of the proposed
SON algorithms. We feel that merely providing simulation results highlight-
ing the SON gains are not enough, and that SON will never be adopted
without solid theoretical guarantees of convergence and stability.

Robustness to noise

Since we expect SON algorithms to run in real-time at a fast time scale using
traffic measurements available at network nodes, the proposed algorithms
must be able to work with highly noisy measurements. Robustness to noise
is therefore one of the most important requirements for SON. Examples of
sources of randomness in networks are: channel variations, user mobility, call
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arrival and termination. Convergence and stability of SON algorithms is an
important concern, and stochastic approximation proves an important tool
to study it as shown in this thesis.

Signaling and Delay

SON algorithms must be able to run in real time in a distributed fashion, us-
ing locally available information. Therefore an important requirement is that
the incurred signaling load is small. Neighboring BSs can typically exchange
information through an interface (X2 interface in the LTE standard), and a
large delay on this interface could prevent SON algorithms from functioning
correctly. Hence not only the signaling load must be small, but the frequency
at which the algorithm updates the network parameters should be reasonably
smaller than the maximal frequency allowed by the interface delay. Typical
delay values for current networks are between 5ms and 50ms.

Coordination

Most SON algorithms have been designed in a standalone manner where we
assume that no other SON algorithm is active at the same time. However,
in the long term, a SON-enabled network should feature tenths to hundreds
of SON entities active at the same time and interacting. There is no way
that network operators will accept deploying such a complex and potentially
unstable system, and it is fair to say that analyzing the interaction between
multiple SON algorithms and providing efficient coordination mechanisms
is currently the most important open problem in SON research. Current
research can be split in roughly two approaches: the first approach would
be to choose dynamically which SON algorithm to activate at a given time
based on Key Performance Indicators (KPIs) and alarms, and the second
approach consists in defining an aggregating mechanism to enable all SONs
to run in parallel while solving conflicts between them. This thesis work
focuses on the second approach. As said previously, the ability to coordinate
SONs from multiple vendors is part of the open questions, and the issue of a
standardized interface for communication between SONs of different vendors
should be discussed.
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1.3 Our Contribution

1.3.1 Content and methodology

In this thesis, our goal is to study the design, modeling and performance eval-
uation of SON mechanisms in wireless networks. We propose SON algorithms
to solve some of the important use cases listed above. Mathematical models
based on queuing theory are proposed. We follow the requirements previ-
ously identified for SON solutions: implementability in the control plane,
stability, robustness to noise, low signaling overhead and tolerance to delays.
This work is not simulation-driven: the issues of stability and robustness are
studied mathematically. A large part of this thesis is concerned with conver-
gence proofs of the proposed SON algorithms. The topic of coordination is
still an open problem which we are currently investigating.

1.3.2 Organization

The remainder of this thesis is organized as follows: in chapter 2 we introduce
concisely the required mathematical tools: queuing theory, point processes,
information theory, stochastic approximation, Markov decisions processes
and reinforcement learning. In chapter 3 we study opportunistic schedulers:
their convergence, closed-form formulas for their performance evaluation, and
their use to perform coverage-capacity optimization. In chapter 4, an algo-
rithm for automatic load balancing with flow-level dynamics is presented and
its convergence is studied. In chapter 5 we study relay-enhanced networks:
their dimensioning, algorithms to perform load balancing and dynamical re-
source allocation using reinforcement learning.

1.3.3 Publications

Journal papers

[J1] R. Combes, Z. Altman, and E. Altman. Scheduling gain for frequency-
selective Rayleigh-fading channels with application to self-organizing
packet scheduling. Performance Evaluation, 68(8):690 – 709, 2011. Spe-
cial Issue: Modeling and Optimization in Mobile, Ad hoc, and Wireless
Networks: selected papers from WiOpt 2010.

[J2] R. Combes, Z. Altman, and E. Altman. Self-organizing relays: Dimen-
sioning, self-optimization and learning. IEEE Transactions on Network
and Service Management, 2012.
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[J3] L. Saker, S.E. Elayoubi, R. Combes, and T. Chahed. Optimal control
of wake up mechanisms of femtocells in heterogeneous networks. IEEE
Journal on Selected Areas in Communication (JSAC), special issue on
Femtocell Networks, 2012.

Conference papers
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Chapter 2

Theoretical foundations

In this chapter we give a basic introduction to several mathematical tools
used in the design and evaluation of SON mechanisms. We feel that although
SON research has an important practical component, it is necessary to use
solid theoretical foundations in order to justify the design and prove the
convergence of the proposed algorithms. Our aim is that this thesis is self-
contained. Results are stated without proofs, and the reader can consult the
references given for a complete exposition of the topics. This chapter can be
used in two ways: the reader can either read it in at one go in order to have
a panorama of the mathematical tools used, or skip this chapter in a first
reading and come back to it after reading the results of the next chapters to
understand their proofs.

2.1 Queuing theory

We present several queuing theory results used for the modeling of wireless
networks. We present a short introduction to point processes since they are
an important component of the modern approach to queuing.

2.1.1 Point processes

Marked point processes

Point processes are random collections of points in a measurable space. They
are used for modeling punctual phenomena such as random arrivals of users in
a queuing system. A complete exposition can be found in [30], and a concise
introduction is found in [31]. We consider M a complete separable metric
space equipped with its Borel σ-algebra. We call configuration a countable
collection of points of M , X = {tn}n∈Z

and we denote by C the space of

31
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configurations. For configuration X and B ⊂ M a Borel set, we define the
number of points of X that fall in B:

NX (B) =
∑

n∈Z

1B(tn). (2.1)

A configuration is locally finite if NX (B) < +∞ when B is bounded. A con-
figuration is simple if its points are disjoint. A point process is a mapping from
a probability space (Ω,F , P) with values in the space of locally finite con-
figurations, equipped with the smallest σ-algebra which makes X → NX (B)
measurable. A simple point process is a point process with values in the
space of disjoint configurations.

A realization of a point process is {Tn(ω)}n∈Z
, a countable collection of

points in M . We denote by:

N(B) =
∑

n∈Z

1B(Tn), (2.2)

the number of points that fall in B. It can be proven that the distribution
of a point process is full determined by its finite-dimensional distributions
N(B1), . . . , N(BK) with (B1, . . . , BK), bounded Borel sets. A remarkable
simplification exists for simple point processes: their distribution if fully
determined by the void probabilities P [N(B) = 0] , for all B Borel sets.

We define marks attached to points of the point process {σn(ω)}n∈Z
with

values in a complete separable metric space Q. {Tn(ω), σn(ω)}n∈Z
is called

a marked point process. In the context of queuing theory, Tn denotes the
instants of arrival of the n-th customer, and σn his service requirement.

Campbell formulas

The first-order measure of the point process is the average number of points
falling in a Borel set, namely:

m(B) = E [N(B)] . (2.3)

We assume that m is finite on bounded Borel sets, so that it indeed defines
a measure on M . A fundamental result is the Campbell formula:

E





∑

n∈Z

f(Tn)



 =
∫

M
f(t)m(dt). (2.4)

with f : M → R non-negative and measurable. The formula is true for
f = 1B by definition of m. By linearity and monotonicity, the formula is
also true for all non-negative measurable functions.
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The first-order measure alone does not define a point process completely,
and large families of different point processes share the same first-order mea-
sure. We can generalize the definition of m to obtain the K-th moment
measure:

mK(B1 × . . .× BK) = E [N(B1)× . . .×N(BK)] . (2.5)

Using the same arguments of linearity and monotonicity, we obtain a K-th
order version of the Campbell formula:

E





∑

(n1,...,nK)∈ZK

f(Tn1 , . . . , TnK
)



 =
∫

MK
f(t1, . . . , tK)mK(dt1, . . . , dtK).

(2.6)
with f : MK → R non-negative and measurable.

Poisson point process

The Poisson process is the simplest point process. Given m a measure on
M , the Poisson process is the unique point process such that N(B) is a
Poisson random variable with parameter m(B) and (N(B1), . . . , N(BK)) are
independent for (B1, . . . , BK) disjoint Borel sets. The Poisson process is
completely described by its first-order measure i.e two Poisson processes with
the same first-order measure have the same distribution.

Stationary ergodic point processes

Assume that M is an Euclidean space. Given t ∈ M , we define the shift
operator θt : Ω→ Ω, such that

{Tn(θt ◦ ω), σn(θt ◦ ω)}n∈Z
= {Tn(ω)− t, σn(ω)}n∈Z

. (2.7)

Namely θt shifts all the points of the point process of −t, and the marks
“follow” the points to which they are attached.

A point process is stationary if its distribution is invariant by θt , t ∈
M . The measure m of a stationary point process is finite and translation
invariant, so it must be proportional to the Lebesgue measure. Namely

m(dt) = m0dt, (2.8)

and m0 is called the intensity of the point process.
A point process is ergodic if θt is an ergodic transformation of (Ω,F , P).

We recall that θt is an ergodic transformation if it is:

− measure preserving: P [θt(E)] = P [E] , for all E ⊂ Ω

− admits no invariant sets except ∅ and Ω : if θt(E) = E then E = ∅ or
E = Ω.
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Campbell measure and Palm probability

Consider a marked stationary point process, B and C Borel sets of M and Q
respectively. A quantity of interest is the average number of marks σn falling
in C, providing that the point to which they are attached Tn falls in B. This
quantity is called the Campbell measure:

cσ(B × C) = E





∑

n∈Z

1B(Tn)1C(σn)



 . (2.9)

In the context of queuing, we are interested in the load , which is the expected
workload arriving at the server during a unit of time. The load is expressed
in terms of the Campbell measure:

ρ =
∫

Q
σcσ([0, 1]× dσ). (2.10)

From stationarity of the point process, B 7→ cσ(B×C) is translation invariant
so it must be proportional to the Lebesgue measure. Furthermore,
cσ(B×Q) = m(B). This allows to define the Palm distribution of the marks:

νσ(C) =
cσ(B × C)

m(B)
. (2.11)

It is noted that the right hand side does not depend on B. In particular, take
B as a ball of arbitrarily small radius centered on 0. The intuitive meaning of
νσ(C) is the probability of a mark σ0 falling in C, conditional to the fact that
the point process has a point at 0. We denote by E0

T the Palm expectation,
which is the expectation with respect to the measure νσ.

Going back to our queuing example, by definition of the Palm probability,
the load is expressed simply in terms of the Palm expectation of the marks:

ρ = m([0, 1])
∫

Q
σνσ(dσ) = m0E0

T (σ0). (2.12)

In general there is a dependency between the marks and the points of the
process, so that the Palm expectation of the marks E0

T (σ0) is not equal to
the expectation of the marks E [σ0]. This fact is known as the hitchhiker’s
paradox.

Loynes theorem

The stability of a single queue with stationary ergodic input is given by
Loynes theorem, first proven in [45]. A demonstration can be found (for
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instance) in [9]. We call W (t) the workload at time t which is the sum of the
remaining service times of the active users at time t. We assume the queue to
be work-conserving: W (t) diminishes at speed 1 for all t such that W (t) > 0
and there is no arrival at time t.

Theorem 2.1. The queue is stable if:

ρ < 1, (2.13)

in the sense that there exists a unique finite workload process almost surely
(a.s). If ρ > 1, no finite workload process exists a.s and the queue is unstable.

2.1.2 Classical queues

We expose two queuing models which are popular for the modeling of wireless
networks: the M/G/1 Processor Sharing (PS) for elastic traffic (web and
File Transfer Protocol (FTP) traffic), and the Multi-rate Erlang for constant
data rate traffic (voice and streaming traffic). The reader can refer to [15]
for a more complete description.

Multi-rate Erlang

The multi-rate Erlang model is an extension of the well-known Erlang model
(the M/M/C/C queue) where the number of circuits required by a customer
is arbitrary. There are N classes of customers and a number of circuits C.
Customers of class i arrive at a server according to a Poisson process of rate
λi, they require ci circuits, and stay in the service an exponentially distributed
amount of time with parameter µi. The traffic intensity generated by users
of class i is:

αi =
λi

µi

. (2.14)

The load of the server is the average number of required circuits per unit of
time divided by the number of circuits:

ρ =
1
C

N
∑

i=1

αici. (2.15)

Write x ∈ NN the state of the server i.e the number of users of each class
present in the server. The system is lossy: when a user arrives in the server
and there are not enough circuits to serve him, he is rejected. We want to
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evaluate the blocking rate which is the proportion of rejected users. The
constraint on the state is written:

〈x , c〉 =
N
∑

i=1

cixi ≤ C (2.16)

First consider the case where C is infinite. The stationary distribution π is
known up to a constant by reversibility:

π(x) = π(0)
N
∏

i=1

αxi
i

xi!
, x ∈ N

N . (2.17)

When C is finite, the stationary distribution is obtained by truncation and
normalization:

π(x) = π(0)
N
∏

i=1

αxi
i

xi!
, 〈x , c〉 ≤ C. (2.18)

The probability Bi of a user of class i to be blocked is:

Bi = π(0)
∑

C−ci<〈x , c〉≤C

π(x). (2.19)

The number of terms in 2.19 grows exponentially in N . Define:

f(n) =
∑

〈x , c〉=n

N
∏

i=1

αxi
i

xi!
, (2.20)

then the blocking probabilities can be expressed as:

Bi =
∑

C−ci<n≤C f(n)
∑

0≤n≤C f(n)
. (2.21)

The value of f can be calculated recursively by:

f(n) =
1
n

N
∑

i=1

αicif(n− ci), (2.22)

with f(0) = 1 and f(n) = 0 if n < 1. The relation 2.22 allows to calculate
the value of Bi with linear complexity in N . This algorithm for calculating
the blocking probabilities is called the Kaufman-Roberts algorithm.
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M/G/1 PS

The M/G/1 PS queue was originally studied in the context of multi-thread
processors ([37]). As previously, there are N classes of users. Users of class
i arrive at a server according to a Poisson process with arrival rate λi and
require an average amount of service 1

µi
. Write x ∈ NN the state of the

server. Users are served on a best-effort basis, namely in state x each user is
served at speed 1

∑N

i=1
xi

. Define ρi the load generated by users of class i:

ρi =
λi

µi

, (2.23)

and the load of the server:

ρ =
N
∑

i=1

ρi. (2.24)

The stability condition is:
ρ < 1. (2.25)

First assume that the service requirements are exponentially distributed.
From reversibility, the stationary distribution is known up to a constant.
The constant is obtained by summation over the state space:

π(x) = (1− ρ)
(
∑N

i=1 xi)!
∏N

i=1 xi!

N
∏

i=1

ρxi
i . (2.26)

The average number of active users has the simple form:

E [x] =
ρ

1− ρ
. (2.27)

It can actually be shown that when the assumption that the service require-
ments are exponentially distributed is removed the results above remain true,
so that the stationary distribution only depends on the average service re-
quirements but not on their distribution. This property is called insensitivity.

2.2 Information theory

In this section we expose the basic concepts of information theory, in par-
ticular the theorems proven by Shannon in [54]: the source coding theorem
and the noisy channel coding theorem. The Shannon theorems give a rigor-
ous definition of the amount of information contained in a signal, and give
capacity of a communications channel which is the maximal rate at which
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information can be transmitted through so that an arbitrary low probabil-
ity of error can be ensured. The capacity represents the physical limit of a
channel. A complete exposition can be found for instance in [29].

For the purpose of this thesis, those results enable to evaluate the perfor-
mance of the wireless link between a BS and a user at a given location and
serve as inputs to various models of packet scheduling and evolution of the
number of active users in a network. To keep the exposition simple we de-
scribe the theory for discrete memoryless channels. For continuous channels,
we simply state the results used in the thesis work.

2.2.1 Source coding theorem

Entropy, conditional entropy and mutual information

We consider random variables with values in a finite set X . A fundamental
quantity in information theory is the entropy of a random variable. which is,
from an intuitive point of view, a measure of randomness of the distribution
of X.

Definition 2.1. For random variable X with distribution p, the entropy of
X denoted H(X) is defined as:

H(X) = −E [log2 p(X)] = −
∑

x∈X

p(x) log2 p(x). (2.28)

H measures the randomness of the distribution of X, as shown by three
basic properties: entropy is null if and only if (iif) X is constant, entropy is
maximal if X is uniformly distributed, and entropy is additive for indepen-
dent random variables:

Property 2.1. − H(X) ≥ 0 with equality iif X is constant,

− H(X) ≤ log2(|X |) with equality iif X is uniformly distributed on X ,

− H(X1, . . . , XN) =
∑N

n=1 H(Xn) if (X1, . . . , XN) are independent.

Another quantity of interest is the conditional entropy H(X|Y ) which
measures the randomness of the distribution of X once the value of Y is
known.

Definition 2.2. The entropy of X conditional to Y is denoted H(X|Y ) and
is defined as:

H(X|Y ) = H(X, Y )−H(Y ). (2.29)
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From the positivity of entropy, we deduce that conditioning reduces en-
tropy:

H(X|Y ) ≤ H(X) , H(X|Y ) = H(X) ⇐⇒ X ⊥⊥ Y. (2.30)

Indeed, if Y is highly correlated to X, observing Y almost fully determines
the value of X and H(X|Y ) is much smaller than H(X). By successive
conditioning, we deduce the entropy chain rule:

H(X1, . . . , XN) =
N
∑

n=1

H(Xn|X1, . . . , Xn−1). (2.31)

Assume that X represents a quantity we are trying to estimate, based
on the observation of another quantity Y . We define X̂ the estimator which
associates X̂(Y ) the estimated value of X to the observed value of Y . The
estimation error is the probability of the event:

Pe = P
[

X̂(Y ) 6= X
]

. (2.32)

If H(X|Y ) is large, X is still “very random” once the value of Y is known,
so that even the best estimator must have a large probability of error. This
intuitive link between conditional entropy and estimation error is illustrated
by Fano’s inequality:

Theorem 2.2. For any estimator X̂, we have that:

H2(Pe) + Pe log2(|X |) ≥ H(X|Y ), (2.33)

with H2(p) = p log2(p) + (1− p) log2(1− p).

A third quantity of interest is the mutual information, which is linked to
conditional entropy and measures the amount of information about the value
of a random variable which can be inferred from the observation of another
random variable.

Definition 2.3. The mutual information between X and Y is denoted I(X, Y )
and is defined as:

I(X; Y ) = H(X)−H(Y |X). (2.34)

The mutual information I(X; Y ) has several properties which make it a
reasonable measure of information: it is positive, symmetrical, and null iff X
and Y independent.

Property 2.2. − I(X; Y ) = I(Y ; X)

− I(X; Y ) ≥ 0 with equality iff X ⊥⊥ Y .
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From the entropy chain rule, we deduce a similar chain rule for mutual
informations:

I(X1, . . . , XN ; Y ) =
N
∑

n=1

I(Xn; Y |X1, . . . , Xn−1). (2.35)

The chain rule for mutual information has the interpretation that the in-
formation contained the vector (X1, X2) is also the sum of the information
contained in X1 when X2 is unknown, and the information contained in X2

when X1 is known. Multi-user detection, in which several interfering signals
are decoded iteratively and subtracted to the total received signal, is based
on this principle.

AEP for i.i.d sources

We consider XN = (X1, . . . , XN) an independent and identically distributed
(i.i.d) sample with distribution p of size N . XN is an element of XN , which
has cardinality 2N log2(|X ||). However, when N goes to infinity, we can show
that with high probability XN falls in a subset of XN which has a cardinality
of 2NH(X). This property is a consequence of the law of large numbers, and
is called Asymptotic Equi-repartition Property (AEP) in information theory.
It forms the basis of the proofs for both Shannon theorems.

Definition 2.4. The typical set with error margin ǫ is defined as:

AN
ǫ = {x ∈ XN : | 1

N

N
∑

n=1

log2 p(xn) + H(X)| ≤ ǫ} (2.36)

From the (weak) law of large numbers, we have that:

− 1
N

N
∑

n=1

log2 p(Xn) P→
N→+∞

H(X), (2.37)

which proves that the distribution of XN is concentrated on the typical set
AN

ǫ when N → +∞.

Theorem 2.3. For all ǫ > 0 we have that:

P
[

XN ∈ AN
ǫ

]

→
N→+∞

1 (2.38)

and :
|AN

ǫ | ≤ 2N(H(X)+ǫ). (2.39)

There exists N0 such that:

|AN
ǫ | ≥ (1− ǫ)2N(H(X)−ǫ) , N ≥ N0 (2.40)
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The AEP in Theorem 2.3 states that for large N , the distribution of XN

concentrates itself on the typical set AN
ǫ . Furthermore, the cardinal of the

typical set is equivalent to 2NH(X). The AEP justifies the interpretation of
entropy as a measure of randomness since it measures the volume of the
support of a probability distribution.

Source coding for finite alphabets

The AEP points out that, whenever H(X) < log2(|X |), XN lies with a
high probability in a set whose cardinality is much smaller than 2N log2|X |.
Therefore, XN which is represented by N log2|X | bits can be compressed
and represented by NH(X) bits, up to an arbitrarily small probability of
error. This is the idea behind the source coding theorem.

Definition 2.5. A source code C of length N with rate R is a collection of
2NR distinct elements of XN called code words Y N

k ∈ XN , 1 ≤ k ≤ 2NR.

Source coding is performed by observing a word XN of length N emitted
by the source, and transforming it into a number between 1 and K noted
C(XN).

C(XN) = k, if ∃k , XN = Y N
k ,

C(XN) = 0, otherwise . (2.41)

If there exists 1 ≤ k ≤ K such that Y N
k = XN , then C(XN) = k,

otherwise C(XN) = 0. Since the code words are distinct, the value of XN

can always be deduced from C(XN) as long as C(XN) 6= 0. The probability
of error is the probability of outputting a 0:

Pe = P
[

C(XN) = 0
]

. (2.42)

Definition 2.6. A rate R is said to be achievable if there exists a sequence
of codes whose rates are smaller or equal to R and whose probability of error
vanishes.

It is noted that R = |X | is always achievable, and that if R is achievable,
so is R′ ≥ R. The source coding gives another interpretation of entropy as
the number of bits per source symbol required to represent the words emitted
by the source.

Theorem 2.4. All rates strictly above H(X) are achievable, and all rates
strictly below H(X) are not achievable.
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This is a surprising result: no matter how smart a coding scheme is,
data cannot be compressed beyond its entropy H(X). Furthermore, the
proof of this theorem is constructive. Namely, choose a sequence of codes
so that the codewords of the N -th code are the elements of the typical set
AN

ǫ . Recall that |AN
ǫ | ≤ 2N(H(X)+ǫ) so the rate of the N -th code is smaller

than H(X) + ǫ. The probability of error of the N -th code is P
[

XN /∈ AN
ǫ

]

which vanishes when N → +∞ using Theorem 2.3. The converse is proven
by showing that the typical set is the “smallest set” (up to a negligible error)
to contain all the distribution of XN .

2.2.2 Noisy channel coding theorem

Communication channel

A communication channel is defined as a relationship between an input se-
quence {Xn}n∈N

with values in X and an output sequence {Yn}n∈N
with

values in Y . {Xn}n∈N
denotes a sequence of messages sent by a source to

a receiver, whose job is to infer it from the channel output {Yn}n∈N
. We

consider discrete and memoryless channels. A channel is discrete if X and
Y are both finite. A channel is memoryless if the distribution of Yn depends
only on Xn , n ∈ N.

A discrete memoryless channel is completely specified by the distribution
of the output symbol Y conditioned on the input symbol X:

p(y|x) = P [Y = y|X = x] , (x, y) ∈ X × Y . (2.43)

A transmission scheme is specified by a channel code.

Definition 2.7. A channel code C of length N with rate R is composed by
a coding function XN : {1, . . . , 2NR} 7→ XN , and a decoding function g :
XN 7→ {0} ∪ {1, . . . , 2NR}. The set of codewords is {XN(1), . . . , XN(2NR)}.

Transmission over the channel is done the following way: the source
chooses a message x ∈ {1, . . . , 2NR}, encodes it into XN(x) and transmits it
through the channel. The decoder receives the corresponding channel output
XN(x), and estimates the message g(XN(x)). The decoding is successful if
x = g(XN(x)). The conditional probability of error is:

Pe(x) = P
[

XN(x) 6= x
]

, (2.44)

and the average probability of error, given a distribution p on the messages:

P e = p(x)Pe(x). (2.45)
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Definition 2.8. A rate R is said to be achievable if there exists a sequence
of codes whose rates are larger or equal to R and whose probability of error
vanishes.

Definition 2.9. The channel information capacity is defined as the maximal
mutual information:

C = max
p

I(X; Y ), (2.46)

where the maximum is taken over all the distributions of the input X.

We can prove that C indeed defines the capacity of a channel, namely C
is the maximal achievable rate. It is noted that p → I(X; Y ) is a concave
function, so that the maximization problem has a unique solution and can
be solved efficiently using standard convex optimization techniques ([20]).

AEP for discrete memoryless channels

We want to deduce the channel input from its output, and from Fano’s
inequality there is no way to retrieve the value of Xn from Yn without error
unless H(Y |X) is null. We proceed as in the source coding problem: we
consider input words of length N XN = (X1, . . . , XN) , and the corresponding
output Y N = (Y1, . . . , YN). The input-output vector (XN , Y N) is hence an
i.i.d sample drawn from the joint distribution distribution p(x, y). We study
the asymptotic properties of the distribution of (XN , Y N).

Definition 2.10. We define the typical set:

AN
ǫ = {(x, y) ∈ XN × YN : | 1

N

N
∑

n=1

log2 p(xn) + H(X)| ≤ ǫ ,

| 1
N

N
∑

n=1

log2 p(yn) + H(Y )| ≤ ǫ |

| 1
N

N
∑

n=1

log2 p(xn, yn) + H(X, Y )| ≤ ǫ} (2.47)

As in the case of source coding, the typical set describes the distribu-
tion of (XN , Y N) for large N . Namely, if (XN , Y N) is an i.i.d sample with
distribution p(x, y), then (XN , Y N) ∈ AN

ǫ with high probability. On the
other hand, if (XN , Y N) is an i.i.d sample with distribution p(x)p(y), then
(XN , Y N) ∈ AN

ǫ with small probability.

Theorem 2.5. If (XN , Y N ) is i.i.d with distribution p(x, y), for all ǫ > 0
we have that:

P
[

(XN , Y N) ∈ AN
ǫ

]

→
N→+∞

1. (2.48)
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Furthermore:
|AN

ǫ | ≤ 2N(H(X,Y )+ǫ). (2.49)

If (X̃N , Ỹ N) is i.i.d with distribution p(x)p(y), for all ǫ > 0 we have that:

P
[

(X̃N , Ỹ N ) ∈ AN
ǫ

]

≤ 2−N(I(X;Y )−3ǫ). (2.50)

Noisy channel coding theorem

Theorem 2.5 points out a coding scheme based on typical sets and this coding
scheme in fact achieves capacity.

Definition 2.11. The information capacity C is the maximal achievable rate.

As in the case of source coding, the proof is constructive. Given R < C
we construct a sequence of channel codes of length N with rate R. For length
N , the codewords are chosen by drawing 2NR i.i.d samples of size N with
distribution p(x). Decoding is based on joint typicality:

g(Y N) = x if∃x, (XN (x), Yn) ∈ AN
ǫ ,

g(Y N) = 0 otherwise. (2.51)

We can assume that the message transmitted is equal to 1 without loss
of generality by symmetry of the construction of the code. Furthermore
Pe(1) = P using the same argument. The conditional probability of error
for message 1 is the probability that (XN(1), Yn) /∈ AN

ǫ , or that there exists
x 6= 1 such that (XN(x), Yn) ∈ AN

ǫ .
Using (2.48), for large N :

P
[

(XN(1), Yn) /∈ AN
ǫ

]

≤ ǫ. (2.52)

Since the codewords are independent, (XN(x), Yn) , x 6= 1 has distribution
p(x)p(y), and using (2.50):

P
[

(XN(x), Yn) ∈ AN
ǫ

]

≤ 2−N(I(X;Y )−3ǫ) , x ∈ {2, . . . , 2NR}. (2.53)

Hence the conditional error probability can be bounded by:

Pe(1) ≤ ǫ + (2NR − 1)2−N((I(X;Y )−R)−3ǫ). (2.54)

Hence whenever R < I(X; Y ), Pe(1) can be made arbitrarily small when
N is large enough. Choosing the distribution of X to maximize the mutual
information, it proves that all rates below capacity are achievable.
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It is noted that although this coding scheme allows to achieve capacity, it
is of very little use in practice since its complexity is exponential: decoding
a codeword of length N requires at least 2NR operations. The question
of designing codes that enable reaching the Shannon bound while keeping
decoding complexity at a minimum is much more complex and is investigated
by the field of coding theory.

2.2.3 Continuous channels

Continuous channels models allow to describe a channel in a much more con-
cise and elegant manner than discrete models, mostly due to the continuous
nature of the physical media used for transmission of information. Both X
are Y lie in some Euclidean space. Entropy and mutual information can
be defined in a similar way as in the discrete case, so that both the source
coding and noisy channel coding theorem hold. In particular, the mutual in-
formation between the channel input and output represents the largest rate
at which information can be transmitted over the channel with vanishing
probability of error. The differential entropy is defined as:

Definition 2.12.
H(X) = −

∫

X
p(x) log2 p(x)dx (2.55)

The mutual information is defined as in the discrete case:

Definition 2.13.
I(X; Y ) = H(X)−H(Y |X). (2.56)

Any partition X × Y induces a corresponding discretized version of the
continuous channel. The continuous definition of mutual information has
the following intuitive interpretation: it can be seen as the maximum of the
(discrete) mutual information over all partitions of X × Y .

Property 2.3.
I(X, Y ) = sup

X̃,Ỹ

I(X̃, Ỹ ) (2.57)

where (X̃, Ỹ ) denotes a discretized version of (X, Y ) according to some par-
tition of X × Y.

2.2.4 Channel models

AWGN

The simplest channel model is the Additive White Gaussian Noise (AWGN)
channel.
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Definition 2.14. The AWGN channel is a memoryless channel such that:

y[t] = x[t] + n[t] , t ∈ N (2.58)

where t→ n[t] is i.i.d Gaussian and n[t] ≡ N (0, N).

If we are allowed to transmit at arbitrary large power, it is intuitive that
the capacity of the channel is infinite since we can distinguish an infinite
number of inputs from the output. Therefore we introduce the constraint
that E [x2] ≤ P with P the maximal transmit power. The channel capacity
is given by maximizing the mutual information:

C = max
E[x2]≤P

I(x; y) =
1
2

log2(1 +
P

N
). (2.59)

N is the noise power of the channel. P
N

is called Signal to Noise Ratio (SNR).
To reach the maximum, the input of the channel must have a Gaussian
distribution x ≡ N (0, P ).

Parallel AWGN channels

A classical result is the capacity of parallel AWGN channels. Assume K
parallel AWGN channels with Nk the noise power of the k-th channel and Pk

the power allocated to the k-th channel. The power constraints are Pk ≥ 0
and

∑K
k=1 Pk ≤ P . The capacity is derived by solving a convex optimization

problem, and writing the Karush-Kuhn-Tucker (KKT) conditions shows that
there exists a constant λ > 0 such that the power allocation maximizing the
total capacity is:

Pk = max(
1
λ
−Nk, 0). (2.60)

This result is known as water-filling: channels with noise power superior to
1
λ

are not allocated any power, and the power allocated to other channels
decreases with their noise power such that 1

λ
−Nk is a constant.

Band-limited AWGN

We define a continuous-time version of the AWGN channel.

Definition 2.15. The band-limited continuous time AWGN channel is a
channel with input-output relationship:

y(t) = x(t) + n(t), t ∈ R (2.61)

where both x and y are band-limited signals with bandwidth W and n(t) is a
white Gaussian noise process with spectral power density N0.
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From the Nyquist-Shannon sampling theorem, this channel is equivalent
to 2W parallel (discrete-time) AWGN channels obtained by sampling x and
y every 1

2W
seconds. The capacity of the band-limited AWGN channel is

therefore:

C = W log2(1 +
P

WN0
), (2.62)

which is perhaps the most famous information theory result. In the reminder
we always work with discrete time channels, since a band-limited continuous
time channel can be reduced to a discrete time equivalent channel.

AWGN capacity in practical systems

From the demonstration of the noisy channel coding theorem (theorem 2.11),
in order to reach capacity, a codebook whose elements are vectors with nor-
mally distributed components must be used. The probability of error van-
ishes when the length of the codewords goes to infinity. In practical systems
several limitations arise:

1. Since the delay and decoding time grow with the length of codewords,
there is a limit on the allowed length of codewords.

2. Due to physical limitations of the electronic circuits used for signal
processing, elements of a codeword must be bounded in absolute value.
This is incompatible with using a codebook made of vectors with nor-
mally distributed elements, since the normal distribution does not have
a bounded support.

3. For each value of the SNR, a different codebook must be used. In
practical settings, only a finite number of codebooks are available.

4. A fraction of the available bandwidth is required for exchanging signal-
ing information.

From link-level simulations for various SNR values, a function φ mapping
SNR into data rate can be obtained. We call φ a link-level curve. Results
in [47] show a very good fit between simulations and the so-called modified
Shannon formula:

φ(S) = bW log2

(

1 +
S

a

)

(2.63)

with a ≥ 1, and b ≤ 1 two constants. For a = 1 and b = 1 (2.63) is simply the
Shannon formula. a represents the loss of efficiency due to practical coding
schemes, and b the proportion of effectively usable bandwidth. [47] suggested
that a = 1.25 and b = 0.75 were the correct values for LTE systems.
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Block fading AWGN

The wireless channel is characterized by a phenomenon known as channel
fading: the average received power from a transmitter varies on the time-
scale of milliseconds, due to the combined effect of multi-path propagation
and mobility of the receiver. The most common model for this phenomenon
is called Rayleigh fading.

Definition 2.16. The Rayleigh-fading AWGN channel is a channel with
input-output relationship:

y[t] = hx[t] + n[t] , t ∈ N (2.64)

where h is a circular symmetric complex normal random variable, i.e h ≡
CN (0, 1).

Such a model can be justified from the central limit theorem: if the
channel output is the sum of a large number of copies of the input with
an independent phase shift uniformly distributed in [0, 2π], then the output
is indeed a normally distributed complex random variable. Hence Rayleigh
fading models a propagation environment with a large number of scatterers.

The common assumption is that channel fading occurs on a much slower
time scale than the Gaussian noise, so that channel fading remains constant
during the duration of a codeword. Such an assumption is called block fading.
Unless explicitly stated, we always work with the block fading assumption.
If block-fading applies and the value of h is known to the transmitter, then
for each time t, the channel can be seen as an AWGN channel with SNR:

SNR =
|h|2P

WN0
. (2.65)

If the channel fading process is ergodic, the average throughput over a large
number of codewords is then:

C = WE

[

log2(1 +
|h|2P
N0W

)

]

= W
∫

R+
log2

(

1 +
P x

WN0

)

e−xdx. (2.66)

The value of h can be known to the transmitter as long as the time-scale on
which the fading varies is slow enough to allow the transmitter to transmit
a training sequence (whose value is known to both the transmitter and the
receiver) to the receiver, and the receiver to feed back the received value to
the transmitter.



2.2. INFORMATION THEORY 49

Multi-tap Rayleigh-fading AWGN

When considering communication over a wide-band channel, the channel
becomes frequency selective due to multi-path propagation and several copies
of the transmitted message are received with delays.

Definition 2.17. The multi-tap Rayleigh-fading AWGN channel is a channel
with input-output relationship:

y[t] = (h ∗ x)[t] + n[t], (2.67)

h[t] =
L
∑

l=1

δ[t− τl]hl; (2.68)

with ∗ denoting convolution, δ - Kronecker’s delta, τl ≥ 0 - the delay of the l-
th tap and {hl}l - L independent circular symmetric complex normal random

variables, i.e hl ≡ CN (0, h
2

l ) and
∑L

l=1 h
2

l = 1.

In tables 2.1 , 2.2 and 2.3 we describe three widely used models known
as Pedestrian A, Pedestrian B and Vehicular A respectively. Those models
were defined in [3], and are based on International Telecommunication Union
(ITU) models [33].

Pedestrian A 3km/h
Relative delay (ns) Relative mean power (dB)
0 0
110 -9.7
190 -19.2
410 -22.8

Table 2.1: Pedestrian A 3km/h

Communication over wide-band channels can be achieved with two tech-
niques:

− Orthogonal Frequency-Division Multiple Access (OFDMA): the band-
width is divided in a large number of narrow-band channels called sub-
carriers. Using a cyclic prefix technique, sub-carriers form parallel
channels and there is no interference between sub-carriers. Each sub-
carrier can be described by a single tap (narrow-band) Rayleigh-fading
AWGN channel. The capacity of such a scheme is equal to the capac-
ity of a single-tap Rayleigh fading AWGN channel multiplied by the
number of sub-carriers.
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Pedestrian B 3km/h
Relative delay (ns) Relative mean power (dB)
0 0
200 -0.9
800 -4.9
1200 -8
2300 -7.8
3700 -23.9

Table 2.2: Pedestrian B 3km/h

Vehicular A 30km/h
Relative delay (ns) Relative mean power (dB)
0 0
310 -1.0
710 -9.0
1090 -10.0
1730 -15.0
2510 -20.0

Table 2.3: Vehicular A 30km/h

− Code Division Multiple Access (CDMA): N orthogonal signals
{sn[t]}1≤n≤N called spreading codes are defined, and the channel be-
comes equivalent to N parallel channels, namely:

y[t] =

(

N
∑

n=1

(h ∗ sn)[t]xn[t]

)

+ n[t], (2.69)

with xn the transmitted signal on the n-th spreading code.

In CDMA, xn changes on a much slower time scale than sn. The time
scale of sn is called the chip time, and the time scale of xn is called the symbol
time. This allows to ignore inter-symbol interference. The capacity in the
CDMA case is more complex than the OFDMA case. Namely, the multi-tap
channel destroys the orthogonality of the spreading codes and {h ∗ sn}1≤n≤N

is not an orthogonal set anymore. This phenomenon is known as inter-code
interference: the signals transmitted on different codes interfere with each
other.
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RAKE receiver

Consider a user receiving data on the first code, all the other codes being
used by other users. The RAKE receiver is a maximal ratio combiner: it
projects the received signal on the first code convoluted with the channel
impulse response h ∗ s1, treating the signal transmitted on the other codes
as noise. We assume that the codes are normalized, ‖sn‖L2 = 1. The RAKE
output is:

o[t] = S[t] + I[t] + W [t], (2.70)

S[t] = x1[t]‖h ∗ s1‖2
L2, (2.71)

I[t] =
N
∑

n=2

xn[t]〈h ∗ s1 , h ∗ sn〉L2, (2.72)

W [t] = 〈h ∗ s1 , n〉L2. (2.73)

The terms S, I and W represent the useful signal, inter-code interference
and Gaussian noise respectively. We treat I as Gaussian noise so that the
channel becomes equivalent to an AWGN channel. Define the correlation of
the codes:

Rn,n′(t) = 〈sn[.] , sn′[.− t]〉L2. (2.74)

In current CDMA systems, the codes used are the convolution of a code
identifying the serving cell called scrambling code, and a Walsh-Hadamard
code. Detailed calculation of R in this case is done in [18]. Given R, we
can calculate E [I2] and the corresponding Signal to Interference plus Noise
Ratio (SINR). E [I2] depends on h, and we use the approximation to replace
E [I2] by its average value on the distribution of h. If power is split equally
among the codes, then the interference power becomes proportional to the
received power times (N − 1). The SINR has the following form:

SINR =
P
∑L

l=1|hl|2
β(N − 1)P + WN0

. (2.75)

β ∈ [0, 1] is known as the orthogonality factor and depends on the codes
correlation R as well as the taps delays and power. For instance, when there
is only one tap, the codes remain orthogonal, β = 0 and equation (2.75)
becomes (2.65).

MIMO Rayleigh-fading AWGN

The last channel model considered in this thesis is MIMO Rayleigh-fading
AWGN, and is appropriate to model a multiplicity of transmit and receive
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antennas communicating over a narrow-band channel. There are nt transmit
antennas and nr receive antennas, and the propagation between each pair
of transmitters is affected by a large number of scatterers, so that Rayleigh
fading applies.

Definition 2.18. The MIMO Rayleigh-fading AWGN channel is a channel
with input-output relationship:

Y [t] = HX[t] + N [t], (2.76)

with N [t] a vector of size nr whose elements are independent white Gaussian
noise processes and H - a nt×nr matrix whose entries are circular symmetric
complex normal random variables.

We assume that all entries of H are independent, which is the optimal
case as far as capacity is concerned ([58]). We consider the Vertical Bell
Labs Space-Time (V-BLAST) architecture in which the transmitter does not
know the instantaneous channel realization H , but knows its statistics. nt

independent streams are transmitted in directions of the canonical vectors,
and each stream is allocated equal power P

nt
. We write Inr

- the nr × nr

identity matrix. The channel capacity is obtained by calculating the mutual
information between two Gaussian vectors, and is (see [59](p337)):

C = log2

[

det
(

Inr
+

P

WN0nt

HHH

)]

. (2.77)

If the value of H is known, further gains can be obtained by transmitting
independent data streams in the directions of the eigenvectors of HHH , and
allocating power to those directions using water-filling.

The distribution of the capacity given the distribution of H is not avail-
able in closed form. However, [35, 32] show that when the number of antennas
increase, the capacity converges in distribution to a Gaussian variable with
known mean and variance available in closed form, as a function of the SNR.
The intuitive justification is that the computation of det induces a signifi-
cant amount of averaging, so that a form of the central limit theorem can
be obtained. This is indeed correct, and can be proven using random ma-
trix theory, which analyses the distribution of eigenvalues of large random
matrices. The formulas for mean and variance are stated in 3.3.3.

2.3 Stochastic approximation

In this section we give a basic exposition to stochastic approximation, which
allows to analyze the behavior of discrete time iterative algorithms in the
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presence of noise by studying the behavior of an associated Ordinary Dif-
ferential Equation (ODE). The ODE represents the mean dynamics of the
algorithm and is generally much simpler to analyze than the discrete time
algorithms since it is fully deterministic. Stochastic approximation was in-
troduced in [51] to find the root of a function whose value is known through
noisy measurements. [36] introduced a class of algorithms called stochastic
gradient algorithms which optimize a cost function which is known through
noisy measurements. The gradient is either known, or is estimated using
finite differences. Stochastic approximation forms the basis for most forms
of learning, including reinforcement learning as shown later. The ODE ap-
proach was introduced in [42] and is a popular approach to stochastic ap-
proximation. A complete exposition of stochastic approximation methods is
found in [38, 16]

2.3.1 Definitions

We define Θ = RN the parameter space equipped with the Euclidian norm,
f : Θ → Θ - a Lipschitz continuous vector field, H =

∏N
n=1[an, bn] with

−∞ < an < bn < +∞ an hyper-rectangle, [.]+H - the projection on H ,
{θn}n∈N

- a sequence of parameters, {ǫn}n∈N
- a sequence of positive step

sizes and {Yn}n∈N
- a sequence of update vectors. The update vectors can be

decomposed in three terms:

Yn = f(θn) + Mn + βn, (2.78)

where {Mn}n∈N
, {βn}n∈N

are two (random) sequences in Θ, which we call
noise and bias respectively. We define the filtration Fn by:

Fn = σ ({θ0, Mn′ , βn′, n′ < n}) . (2.79)

The iterate θn is defined recursively as:

θn+1 = [θn + ǫnYn]+H . (2.80)

To simplify the exposition of we restrict ourselves to the case where the
parameters remain constrained to a compact set. If it not the case, we need
to prove stability, i.e that the sequence {θn}n∈N

is either bounded a.s, or that
it is tight. The reader can refer to the references given for more details.

2.3.2 The ODE approach

Heuristic justification

Let us give an intuitive justification of the ODE approach. The iterate θn

is updated by taking a step in the direction of Yn, and projecting the result
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on the constraint set H . The “average direction” of update is f(θn). If step
sizes ǫn and the bias terms βn are small enough, it is reasonable to think that
the effect of the noise {Mn}n∈N

will disappear because of averaging, and the
behavior of the sequence {θn}n∈N

will be close to:

θn+1 = [θn + ǫnf(θn)]+H . (2.81)

We recognize (2.81) as a Euler scheme for the ODE:

θ̇ = f(θ) + G(θ), (2.82)

where G is the “minimal force” so that the solutions of the ODE remain
inside H . If θ is in the interior of H , we define G(θ) = 0, and otherwise we
define G so that f(θ) + G(θ) is the projection of f(θ) on the tangent cone to
H at point θ.

Our reasoning is only heuristic, and stochastic approximation theorems
provide us with a rigorous analysis of the link between the discrete algorithm
and the ODE. In particular, it can be shown that under reasonable assump-
tions on the noise, the sequence {θn}n∈N

converges to asymptotically stable
sets of the ODE. Depending on the assumptions on the step size sequence,
almost sure convergence or convergence in distribution occurs.

Asymptotic behavior of ODEs

We define the mean ODE as:

θ̇ = f(θ) + G(θ). (2.83)

Since we are mainly concerned with the asymptotic behavior of (2.83), we
briefly recall the concept of Lyapunov stability. This enables to define asymp-
totic behavior of the solutions of ODEs.

Definition 2.19. A stationary point of (2.83) is a point θ∗ ∈ Θ such that:

f(θ∗) + G(θ∗) = 0. (2.84)

We define B(θ, δ) the open ball of radius δ ≥ 0 centered at θ ∈ Θ. We
denote by d(θ, M) = inf

θm∈M
‖θ − θm‖ the distance to a closed set M .

Definition 2.20. A set M is said to be invariant if

θ(0) ∈M =⇒ θ(t) ∈M , t ≥ 0. (2.85)
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Definition 2.21. A compact invariant set M ⊂ Θ is an attractor if it has
an open and invariant neighborhood O such that:

θ(0) ∈ O =⇒ d(θ(t), M) →
t→+∞

0, (2.86)

O is called the basin of attraction of M .

Definition 2.22. A compact set M is said to be Lyapunov stable if for all
δ > 0 there exists δ′ > 0 such that if

d(θ(0), M) < δ′, (2.87)

then:
d(θ(t), M) < δ , t ≥ 0. (2.88)

Namely, a set is Lyapunov stable if all solutions remain close to it forever
if they started close enough.

Definition 2.23. A compact set M is asymptotically stable if it is Lyapunov
stable and an attractor. If the basin of attraction of M is Θ, then M is
globally asymptotically stable.

It is noted that there exists attractors which are not Lyapunov stable,
so requiring Lyapunov stability in the definition of asymptotic stability is
not redundant. A method for proving asymptotic stability is to define a
Lyapunov function. A Lyapunov function extends the concept of potential
energy of a physical system to a general dynamical system.

Definition 2.24. A continuously differentiable function V : Θ → R is a
Lyapunov function if it is positive:

V (θ) ≥ 0 , θ ∈ Θ, (2.89)

radially unbounded:
V (θ) →

‖θ‖→+∞
+∞ (2.90)

and strictly decreasing along trajectories:

V (θ) > 0 =⇒ V̇ (θ) < 0. (2.91)

The existence of a Lyapunov function is enough to prove asymptotic sta-
bility.

Theorem 2.6. If V is a Lyapunov function, then the set:

V −1({0}) = {θ ∈ Θ : V (θ) = 0} (2.92)

is globally asymptotically stable.
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2.3.3 Martingale difference noise: decreasing step sizes

We can state the theorems that link the asymptotic behavior of the discrete
algorithms to the asymptotically stable sets of the ODE. We first examine the
case in which the step sizes vanish at sufficient speed so that a.s convergence
occurs.

Assumption 2.1.
∑

n≥0

ǫn = +∞ ,
∑

n≥0

ǫ2
n < +∞ (2.93)

sup
n≥0

E
[

‖Yn‖2
]

< +∞, (2.94)

∑

n≥0

ǫn‖βn‖ < +∞ a.s. (2.95)

E [Mn|Fn] = 0, (2.96)

Theorem 2.7. If there exists a Lyapunov function V for the ODE (2.83),
then:

d(θn, V −1({0})) a.s→
n→+∞

0, (2.97)

Application of Theorem 2.7 is straightforward in the case where f(θ) =
−∇θg(θ), i.e the ODE is describes a gradient descent projected on H . In this
case the sequence converges to the set of local minima of g in H a.s.

One must be careful when linking the behavior of the ODE and the dis-
crete algorithm. In particular, it could be tempting to say that if all solutions
of the ODE converge to a given point, then the sequence {θn} converges to
this point a.s. This turns out to be false, and we require global asymptotic
stability for the result of Theorem 2.7 to hold.

2.3.4 Martingale difference noise: constant step sizes

While choosing decreasing step sizes as above guarantees strong (almost sure)
convergence, it can lead to poor numerical behavior when the algorithm “gets
stuck” in a given region for a long time, and choosing a small constant step
size ǫn = ǫ > 0 allows to overcome this problem. Furthermore, in many
practical applications, the system on which the algorithm is applied is not
stationary and varies slowly, so that a constant step size allows to “track”
those slow variations while a decreasing step size would not allow adaptation.

The drawback is that if the noise does not vanish asymptotically, a.s con-
vergence cannot occur, and only a weaker, distributional form of convergence
can be expected. Namely, when ǫ is small, it is reasonable to think that the
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distribution of θn , nǫ >> 1 will be concentrated around a globally asymp-
totically stable set (if such a set exists) of the ODE, and the amount of time
spent next to this set can be rendered arbitrarily large by choosing ǫ small
enough.

In order to avoid ambiguity, we use the superscript ǫ to explicitly highlight
the dependence on ǫ.

Assumption 2.2.
ǫn = ǫ > 0, n ≥ 0 (2.98)

{Y ǫ
n} is uniformly integrable.

sup
n≥0

E
[

‖Y ǫ
n‖2

]

< +∞, (2.99)

E [‖βǫ
n‖] →n→+∞

0. (2.100)

E [M ǫ
n|Fn] = 0, (2.101)

Theorem 2.8. If there exists a Lyapunov function V for the ODE 2.83,
then, for all µ > 0:

lim sup
n

P
[

d(θǫ
n, V −1({0})) > µ

]

= o(ǫ). (2.102)

Once again it is noticed that global asymptotic stability is required for
the convergence to hold.

2.3.5 Correlated noise: decreasing step sizes

The theorems above assumed that the noise Mn is a martingale difference
noise, which enables applying the Burkholder-Davis-Gundy inequality to
bound the error due to the noise. It is noted that noise is uncorrelated in this
case: E [MnMn′ ] = 0 , n 6= n′. However Mn and Mn′ need not independent.

In many practical situations, the noise is not a martingale difference noise,
and it exhibits correlation. For instance consider the case where we estimate
the load of a queue by measuring the workload arriving per unit of time
during successive time intervals. If the arrivals do not follow a Poisson pro-
cess, instants of arrivals of jobs are correlated, and the load estimates are
correlated as well. Another example of interest is packet scheduling where
the coherence time of the fading process is large, so that the instantaneous
throughput of users is correlated across several scheduling instants.

When the noise is correlated, we need to add a condition on the mixing
time of the noise. If the noise mixes sufficiently fast, then the noise effect
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shall still be averaged out, and the system can be analyzed using the ODE
as in the martingale difference noise case.

We write ξn ∈ Ξ the variables representing the effective memory of the
noise process, with Ξ a metric space, such that the iterate can be decomposed
as:

Yn = f(θn, ξn) + Mn + βn. (2.103)

The following assumptions are used:

Assumption 2.3.
sup

n
E
[

‖Yn‖2
]

< +∞, (2.104)

θ → f(θ, ξ) is continuous , ξ ∈ Ξ, (2.105)

ǫn =
1
nγ

,
1
2

< γ ≤ 1. (2.106)

There exists a function f such that for all θ:

ǫN

N
∑

n=1

(f(θ, ξn)− f(θ)) a.s→
N→+∞

0, (2.107)

ǫN

N
∑

n=1

Mn
a.s→

N→+∞
0, (2.108)

ǫN

N
∑

n=1

βn
a.s→

N→+∞
0, (2.109)

(θ, ξ)→ f(θ, ξ) is bounded, (2.110)

θ → f(θ, ξ) is continuous uniformly in ξ, (2.111)

Those assumptions are slightly less general than the conditions given in
[38][Chapter 8], and are used to facilitate the exposition. Theorem 2.9 is a
consequence of [38][Theorem 1.1, Chapter 6, page 166].

Theorem 2.9. If there exists a Lyapunov function V for the ODE

θ̇ = f(θ) + G(θ), (2.112)

then:

d(θn, V −1({0})) a.s→
n→+∞

0, (2.113)
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2.3.6 Correlated noise: constant step sizes

As in the martingale difference noise case, assumptions are weaker for the
constant step size. For the assumptions, A denotes an arbitrary compact
subset of Ξ.

Assumption 2.4.
ǫn = ǫ > 0, n ≥ 0 (2.114)

{Y ǫ
n}n,ǫ is uniformly integrable, (2.115)

E [M ǫ
n|Fn] = 0, (2.116)

θ→ f(θ, ξ) is continuous , ξ ∈ A, (2.117)

{ξǫ
n}n,ǫ is tight, (2.118)

{f(θ, ξǫ
n)}n,ǫ , {f(θǫ

n, ξǫ
n)}n,ǫ are uniformly integrable. (2.119)

lim
N,M,ǫ

1
M

N+M−1
∑

n=N

βǫ
n = 0 in mean, (2.120)

There exists a function f such that for all θ:

lim
N,M,ǫ

1
M

N+M−1
∑

n=N

(f(θ, ξǫ
n)− f(θ))1A(ξǫ

n) = 0 in probability. (2.121)

Theorem 2.10 is a consequence of [38][Theorem 2.2, Chapter 8, page 255].

Theorem 2.10. If there exists a Lyapunov function V for the ODE (2.112),
then, for all µ > 0:

lim sup
n

P
[

d(θǫ
n, V −1({0})) > µ

]

= o(ǫ). (2.122)

2.4 Reinforcement learning

The principle of reinforcement learning is to find the optimal controller for
a system which is both dynamical and random, without knowledge of its
dynamics, based on trial-and-error. Its origins are in robotics and artifi-
cial intelligence and it has been applied to various areas such as computer
backgammon, derivatives pricing in mathematical finance, and control of
communication networks. Since reinforcement learning has mainly been de-
veloped considering that the system to control is a discrete time Markov
Decision Process (MDP), we first give a short introduction to MDPs.



60 CHAPTER 2. THEORETICAL FOUNDATIONS

2.4.1 Markov decision processes

Definition

MDPs model situations in which an agent controls a system whose evolution
has the Markov property. The agent takes decisions sequentially based on
the current state of the system: time is discrete, and at time t ∈ N the agent
observes the current state of the system s(t), chooses an action a(t), and
receives a reward r(t). The system then moves to the next state s(t+1), and
the chosen actions have an effect on the dynamics of the system. The goal
of the agent is to maximize the cumulated rewards collected through time,
for instance a discounted sum of rewards.

MDPs form the basis of reinforcement learning and have applications in
various fields such as optimal stopping problems in mathematical finance,
control of queuing networks in telecommunications, or shortest path prob-
lems. For a full exposition of MDPs and their optimal control, the reader
can refer to [50].

We first define the probability space of a MDP. We consider a finite state
space S, a finite action space A and a maximal reward value rmax < +∞.
The sample space Ω is defined as:

Ω = {S ×A× [0, rmax]}∞. (2.123)

For S and A we use the discrete σ-algebra, and for [0, rmax] we use the Borel
σ-algebra. We define F the σ-algebra on Ω as the product σ-algebra. A
sample path of the MDP is:

ω = (s(t), a(t), r(t))t∈N, (2.124)

with s(t) ∈ S the state at time t, a(t) ∈ A - the action chosen at time t and
r(t) ∈ [0, rmax] - the reward at time t. We need to specify how actions are
chosen given the observed sequence of states.

Definition 2.25. A Markov policy π is a mapping

π : S → D(A), (2.125)

with D(A) the set of probability distributions on A. We write π(s, a) the
probability of choosing action a in state s for policy π.

A Markov policy is a decision rule based on the current state, at time t, it
specifies the distribution of a(t) as a function of s(t). We can consider more
general history dependent policies for which the decision is a function of the
complete history of the process up to time t, but it turns out (see for instance
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[12]) that for every MDP there exists Markov policies which are optimal. We
can restrict ourselves to Markov policies without loss of generality. We use
the term “policy” in place of “Markov policy” in the rest of this chapter.

When applying policy π, the probability space of the MDP is (Ω,F , Pπ).

Definition 2.26. The process t→ (s(t), a(t), r(t)) is a MDP with policy π if
it verifies the Markov property. Namely, for all (st, at, rt)t∈N ∈ Ω and T ∈ N:

Pπ[s(t) = st, a(t) = at, r(t) ∈ [0, rt], 0 ≤ t ≤ T ]

= P [s(0) = s0]
T
∏

t=0

P [s(t + 1) = st+1|s(t) = st, a(t) = at]

π(st, at)P [r(t) ∈ [0, rt]|s(t) = st, a(t) = at] . (2.126)

Equation (2.126) states that:

− the distribution of the action a(t) depends only on the current state
s(t),

− the distribution of the reward r(t) depends only on the current action
a(t) and state s(t),

− the transition from s(t) to s(t + 1) depends only on the current action
a(t).

Definition 2.27. A MDP is time-invariant if the transition probabilities and
conditional rewards do not depend on time:

t 7→ P [r(t) = rt|s(t) = st, a(t) = at] and

t 7→ P [s(t + 1) = st+1|s(t) = st, a(t) = at] , (2.127)

are both constant.

We work with time-invariant MDPs in the rest of this chapter. To ease
notation, we define the transition probabilities:

p(s′, s, a) = P [s(t + 1) = s′|s(t) = s, a(t) = a] , (2.128)

and the average rewards:

r(s, a) = E [r(t)|s(t) = s, a(t) = a] . (2.129)

The goal of the agent is to maximize the expectation of a function of the
rewards. We call this quantity the total reward (as opposed to the reward
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obtained at a given time t). We denote by R(ω) the total reward obtained
for sample path ω, and several definitions are possible for R(ω):

Average reward, horizon T : R(ω) =
1
T

T
∑

t=0

r(t) (2.130)

Average reward, infinite horizon : R(ω) = lim inf
T →+∞

1
T

T
∑

t=0

r(t) (2.131)

Discounted reward, discount factor λ: R(ω) = (1− λ)
∑

t≥0

λtr(t). (2.132)

When considering the average reward with infinite horizon, using a lim inf is
necessary since the limit does not exist in general. The expected total reward
of the MDP when using policy π is Eπ [R(ω)].

Optimal control

The optimal control of a MDP consists in finding the policy which maximizes
the expected total reward, and can be done by defining the value function
V : S → R+:

V (s) = max
π

Eπ [R(ω)|s(0) = s] , (2.133)

which is the best expected total reward that can be obtained starting at state
s. The maximum is taken on all policies.

We consider the case where the total reward is the discounted reward
with discount factor λ as in (2.132). The value function obeys a dynamic
programming principle called the Bellman equation. The Bellman equation
is:

V (s) = max
a∈A



r(s, a) + λ
∑

s′∈S

p(s′, s, a)V (s′)



 , (2.134)

which we write in short form:

V = B(V ). (2.135)

The Bellman equation (2.134) is obtained by writing the discounted reward
as the sum of the reward obtained at time 0 and the discounted reward
obtained after time 0.

Given two functions V : S → R+, V ′ : S → R+, (2.134) gives that:

max
s∈S
|B(V )(s)− B(V ′)(s)| ≤ λ max

s∈S
|V (s)− V ′(s)|. (2.136)

Hence B is a contraction mapping with Lipschitz constant λ < 1, and the
Bellman equation has a unique solution by the contraction mapping theorem.
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Furthermore, V can be derived iteratively by applying B repeatedly. This
procedure is called value iteration:

V (0) = 0,

V (n+1) = B(V (n)) , n ≥ 0 (2.137)

and V (n) →
n→+∞

V geometrically at rate λ, using the contraction mapping

theorem.
We define the Q function:

Q(s, a) = r(s, a) + λ
∑

s′∈S

p(s′, s, a)V (s′), (2.138)

which is the expected total reward if the agent starts at state s, uses action
a at time 0, and then chooses the optimal policy afterwards. The Bellman
equation (2.134) is the optimality equation for the MDP, namely a policy π∗

is optimal if and only if:

V (s) =
∑

a∈A

π∗(s, a)Q(s, a). (2.139)

Hence once the value function has been determined, an optimal policy can
be derived by applying (2.139).

2.4.2 Q-learning

Reinforcement learning

In principle, an optimal policy can always be found. However, in order to use
value iteration, we need to know the expectation of the rewards r(s, a) and
the transition probabilities p(s′, s, a). Namely we need to know the model of
the system we are controlling. In many situations of practical interest, the
system model is either unknown, or too complicated to obtain with sufficient
accuracy. The principle of reinforcement learning is to derive the optimal
policy without knowledge about the system model, through repeated inter-
action with the system. Since the system can only be observed during a finite
time, we call sample path of length T , (s(t), a(t), r(t))0≤t≤T , from which the
value function and the optimal policy can be estimated. The definition of
the probability space poses no difficulty when we restrict the observation to
0 ≤ t ≤ T . Reinforcement learning is a model-free method. A complete
exposition of reinforcement learning is found in [56].
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Q-learning

The simplest reinforcement learning algorithm is Q-learning introduced in
[61]. The principle of Q-learning is to construct a sequence {Q̃ǫ(t, ., .)}t∈N

of
estimates of the Q function. The algorithm can be decomposed into three
steps. The initialization is:

Q̃ǫ(0, s, a) = 0 , (s, a) ∈ S × A. (2.140)

The action selection rule is:

a(t) =











arg max
a∈A

Q̃ǫ(t, s(t), a) with probability (1− pexp)

Uniform(A) with probability pexp

(2.141)

with pexp ∈ (0, 1) an exploration probability. The estimate of the Q function
is updated by:

Q̃ǫ(t + 1, s, a) = Q̃ǫ(t, s, a) , (s, a) 6= (s(t), a(t)), (2.142)

Q̃ǫ(t + 1, s(t), a(t)) = (1− ǫ)Q̃ǫ(t, s(t), a(t))

+ ǫ
(

r(t) + λ max
a∈A

Q̃ǫ(t, s(t + 1), a)
)

. (2.143)

with ǫ > 0 a constant step size. The action selection rule is to choose the ac-
tion which has yielded the best performance so far with probability (1−pexp)
(exploitation), and to choose a random action with probability pexp (explo-
ration). Exploration is necessary since all state-action pairs must be visited
infinitely often for convergence to occur. The update step is a stochastic ap-
proximation scheme. It can be shown, using stochastic approximation, that
the sequence of estimates Q̃ǫ(tǫ, ., .) d→

ǫ→0
Q with ǫtǫ →

ǫ→0
+∞.

2.4.3 Policy search approach

Policy search

The advantages of Q-learning are its simplicity in terms of implementation,
and its convergence to the true Q function, from which the optimal policy is
easily obtained. However, one serious drawback is that it is only suitable for
a small number of states, otherwise it converges very slowly. This is because
Q-learning is not able to obtain information about states-action pairs that
have not been visited before. In other words it is not able to generalize its
knowledge about a state-action pair to other state-action pairs which are
close. This is problematic because the number of states grows exponentially



2.4. REINFORCEMENT LEARNING 65

with the dimension of the state space, and problems of practical interest such
as backgammon can easily have millions of states. A solution to maintain
scalability is to employ a policy search technique. The space of all policies is
much too large to be explored entirely, so the search is restricted to a “well-
chosen” subset {π(θ) : θ ∈ Θ} where Θ is a convex subset of some Euclidean
space.

π(θ) is the policy associated to parameter θ, and we define J(θ) the
expected total reward obtained when policy π(θ) is applied. The optimal
control problem is reduced to optimizing J with respect to θ. If the param-
eterized policies are well chosen, J(θ) is differentiable with respect to the
policy parameter θ, and a local optimum can be found using a local search
such as gradient ascent. We mainly consider local search because the gra-
dient of J with respect to θ can be estimated from observing sample paths,
which enables to optimize θ in an on-line fashion, using measurements from
a real system and optimizing θ while the system is running.

Finite horizon policy gradient

We assume that the total reward depends only on sample paths of length
T , for instance choosing the total reward as the average reward with hori-
zon T as in (2.130). The simplest approach to obtain the gradient ∇θJ(θ)
would be to observe several sample paths of length T , and use finite differ-
ences to estimate ∇θJ(θ). Although simple to implement, this approach has
two drawbacks. The first is that obtaining several sample paths of the same
system can only be done if the system can be simulated, and does not ap-
ply when we are using measurements from an up and running system. The
second is that the number of sample paths required is equal to the num-
ber of components of θ, so the method only applies for a small number of
components.

A better alternative would be to estimate all components of ∇θJ(θ) from
the same sample path. This is done using a technique known as the likeli-
hood ratio technique. Alternatively, it is denoted REINFORCE ([62]) in the
reinforcement learning literature.

We write the definition of J :

J(θ) = Eπ(θ) [R(ω)|s(0) = s0] =
∫

Ω
R(ω)Pπ(θ)(ω)dω (2.144)

where Pπ(θ)(ω) is the probability of sample path ω when starting at s(0) and
applying policy π(θ). We use the notation π(θ)(s, a) to denote the probability
of selecting action a in state s according to policy π(θ). The probability of a
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sample path can be decomposed using the Markov property as in (2.126):

Pπ(θ)(s(t) = st, a(t) = at, r(t) ∈ [0, rt])

= P [s(0) = s0]

(

T
∏

t=0

p(st+1, st, at)P [r(t) ∈ [0, rt]|s(t) = st, a(t) = at]

)

(

T
∏

t=0

π(θ)(st, at)

)

. (2.145)

We have decomposed the sample path probability as two terms: a term
containing transitions and rewards which do not depend on θ, and a term
containing selected actions which does depend on θ. We differentiate the
average cost (2.144) as:

∇θJ(θ) =
∫

Ω
R(ω)∇θPπ(θ)(ω)dω

=
∫

Ω
R(ω)

∇θPπ(θ)(ω)
Pπ(θ)(ω)

Pπ(θ)(ω)dω

= Eπ(θ)
[

R(ω)∇θ log(Pπ(θ)(ω))
]

. (2.146)

Equation (2.146) indeed enables to estimate all components of ∇θJ(θ)
from the same sample paths, as long as the term ∇θ log(Pθ(ω)) can be com-
puted for any sample path. This is indeed the case, using equation (2.145):

∇θ log(Pπ(θ)(ω)) =
T
∑

t=0

∇θ log(π(θ)(st, at)), (2.147)

where we have used the fact that only the terms linked to action selection
depend on θ.

For the reasoning above to make sense, we shall assume that:

Assumption 2.5.
0 < π(θ)(s, a), s ∈ S, a ∈ A (2.148)

and

Assumption 2.6.

θ → π(θ)(s, a) is differentiable , s ∈ S, a ∈ A. (2.149)

Finally, assume that we simulate N independent sample paths (ωn)1≤n≤N ,
then an unbiased estimate for ∇θJ(θ) is:

1
N

N
∑

n=1

R(ωn)∇θ log(Pπ(θ)(ωn)) a.s→
N→+∞

∇θJ(θ), (2.150)
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by the law of large numbers.
In summary, we are able to estimate all the components of ∇θJ(θ) from

the same sample paths, and without any knowledge about the transition
probabilities and rewards distribution, since ∇θ log(Pπ(θ)(ω)) does not in-
volve transition probabilities or rewards distribution.

Going back to assumptions 2.5 and 2.6, we can conclude that: in a given
state, policy π(θ) must assign a strictly positive probability to all actions and
therefore cannot be deterministic, furthermore, the probability assigned to a
given action in a given state must be differentiable. The learning can only be
done with stochastic policies, although we know that in general the optimal
policy is deterministic. This is a fundamental aspect of reinforcement learn-
ing: all actions in all states must be tried with strictly positive probability to
find the optimal policy. This was already the case for Q-learning: the action
selection policy (2.141) chooses a random action with probability pexp > 0 so
that all actions in all states are selected with strictly positive probability.

Variance reduction techniques

To enhance the efficiency of policy gradient methods, several variance reduc-
tion techniques have been developed. Since the gradient estimates are to be
used in a stochastic gradient algorithm to optimize the total reward, reducing
the variance of the gradient estimates enables faster convergence.

A first technique is to introduce a constant denoted baseline in the rein-
forcement learning literature. Replacing R by a constant function in (2.146),
we have that:

Eπ(θ)
[

∇θ log(Pπ(θ)(ω))
]

= ∇θ1 = 0. (2.151)

Hence, for b ∈ R we have that:

∇θJ(θ) = Eπ(θ)
[

R(ω)∇θ log(Pπ(θ)(ω))
]

= Eπ(θ)
[

(R(ω)− b)∇θ log(Pπ(θ)(ω))
]

. (2.152)

The optimal baseline b∗ minimizes the variance of the gradient estimator.
b∗ is found by differentiating the variance of the gradient estimator with
respect to b:

b∗ =
Eπ(θ)

[

R(ω)(∇θ log(Pπ(θ)(ω)))2
]

Eπ(θ) [(∇θ log(Pπ(θ)(ω)))2]
. (2.153)



68 CHAPTER 2. THEORETICAL FOUNDATIONS

We simulate N independent sample paths (ωn)1≤n≤N , then the estimate
with baseline for ∇θJ(θ) is:

bN =
∑N

n=1 R(ωn)(∇θ log(Pπ(θ)(ωn)))2

∑N
n=1(∇θ log(Pπ(θ)(ωn)))2

a.s→
N→+∞

b∗, (2.154)

1
N

N
∑

n=1

(R(ωn)− bN )∇θ log(Pπ(θ)(ωn)) a.s→
N→+∞

∇θJ(θ). (2.155)

In the case where the total reward is written as a sum of rewards, another
variance reduction technique can be used. We expose the method for the
average reward with horizon T . Given a sample path ω and 0 ≤ t ≤ T ,
intuition is that the value of r(t) should not depend on the actions taken
after t. Combining (2.146) and (2.147) this suggests that:

∇θJ(θ) = Eπ(θ)

[

1
T

T
∑

t=0

r(t)
t
∑

u=0

∇θ log(π(θ)(su, au))

]

. (2.156)

This intuition turns out to be correct, and a proof can be found in [62].

Infinite horizon policy gradient

When the horizon is infinite, the previous approach cannot be applied di-
rectly. We work with the infinite horizon average cost. A method to esti-
mate the gradient for infinite horizons is given in [10]. In this case we need a
supplementary assumption on the ergodicity of the underlying Markov chain,
for all values of θ.

Assumption 2.7. For all θ, {s(t)}t∈N
is an ergodic Markov chain.

This in particular ensures that:

J(θ) = lim
T →+∞

1
T

T
∑

t=0

r(t), (2.157)

where the limit exists because we have assumed ergodicity. As expected, if
the initial state s(0) is not drawn according to the stationary distribution
associated to policy P (θ), then the gradient ∇θJ(θ) cannot be estimated
without bias. The bias term is linked to the mixing time of the Markov
chain, so that for rapidly mixing systems, the bias is negligible.

To estimate the gradient we define the eligibility trace z(t):

z(0) = 0

z(t + 1) = βz(t) +∇θ log(π(θ)(s(t), a(t))), (2.158)
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where β ∈ (0, 1) is a parameter controlling the time window used by the
algorithm for averaging. The link between β and the mixing time is clarified
later. The gradient is estimated recursively by ∆(t):

∆(0) = 0,

∆(t + 1) =
t∆(t) + z(t)r(t)

t + 1
. (2.159)

When t is large, the dot product between E [∆(t)] and ∇θJ(θ) becomes
strictly positive so that E [∆(t)] is a valid ascent direction.

Theorem 2.11 ([10]). There exists β0 ∈ [0, 1), such that if β ≥ β0, then:

lim inf
t→+∞

〈E [∆(t)] , ∇θJ(θ)〉 > 0, (2.160)

and:

lim
t→+∞

P [〈∆(t) , ∇θJ(θ)〉 ≤ 0] = 0. (2.161)

Results in [10] show that when the mixing time is large, β0 must be close
to 1, and that the variance of the gradient estimates grows as 1

(1−β)2 . Namely
there is a bias-variance trade-off: for the gradient estimates to be accurate
we need to choose β close to 1, but β too close to 1 makes the variance of the
gradient estimates too large, so that the resulting stochastic gradient ascent
converges very slowly. Similarly to the finite horizon case, a baseline can be
added to reduce the variance of the gradient estimate ∆(t).

2.4.4 Continuous time models

The reinforcement learning techniques exposed above are valid in problems
in which time is discrete. However, a lot of problems of interest are nat-
urally expressed in continuous time, and we would like to be able to work
in continuous time, without approximating the continuous system using a
discretization. For instance, problems of control of queuing networks are
naturally described in continuous time. It turns out that by sampling the
continuous time system at well chosen random times, we can use the ex-
isting reinforcement learning algorithms for discrete time systems directly.
We give a brief summary of this technique known as uniformization. Com-
plete exposition is found in [50]. The continuous time equivalent is called a
Semi-Markov Decision Process (SMDP).



70 CHAPTER 2. THEORETICAL FOUNDATIONS

2.4.5 Semi-Markov decision processes

Informally, a SMDP is the same as a MDP, except for the fact that the
system stays in each state a random amount of time. The sample space
becomes:

Ω = {S × A× [0, rmax]× R
+}∞. (2.162)

We use the Borel σ-algebra on R+, and the σ-algebra for the sample space
is the product σ-algebra. A sample path of the SMDP is:

ω = (s(t), a(t), r(t), T (t))t∈N, (2.163)

where T (t) denotes the amount of time that the system stays in state s(t).
Namely, at the t-th decision period, the system arrives in state s(t), the agent
chooses an action a(t), then the system stays in state s(t) during a random
duration T (t), and the agent receives a reward r(t)T (t). We define the time
of arrival in state s(t) by:

U(t) =
t−1
∑

u=0

T (u). (2.164)

It is noted that the SMDP model allows the agent to take decisions only
upon arrival in a given state. The same definition of policies is used as in
the MDP case.

When applying policy π, the probability space of the SMDP is (Ω,F , Pπ).

Definition 2.28. The process t → (s(t), a(t), r(t), T (t)) is a SMDP with
policy π if it verifies the Markov property. Consider a sample path
(st, at, rt, Tt)t∈N ∈ Ω and write (st, at, rt, Tt)0≤t∈N its restriction to 0 ≤ t ≤
T ′ < +∞. Namely we only consider the T ′ first state transitions. The
Markov property holds if, for all T ′ ∈ N:

Pπ[s(t) = st, a(t) = at, r(t) ∈ [0, rt], T (t) ∈ [0, Tt], 0 ≤ t ≤ T ′]

= P [s(0) = s0]
T ′
∏

t=0

p(st+1, st, at)π(st, at)P [r(t) ∈ [0, rt]|s(t) = st, a(t) = at]

P [T (t) ∈ [0, Tt]|s(t) = st, a(t) = at] . (2.165)

The Markov property (2.165) states that the distribution of amount of
time spent in a given state is only a function of the action upon arrival in
this state.

An interesting particular case is when the time spent in each state is ex-
ponentially distributed, which makes the system a Continuous Time Markov
Decision Process (CTMDP). This model is useful for instance in the the
control of queuing networks when users arrive according to a Poisson process
with exponentially distributed service times.
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Definition 2.29. A SMDP is a CTMDP if the time spent in each state is
exponentially distributed:

P [T (t) ∈ [0, Tt]] = 1− exp(−Ttβ(st, at)), (2.166)

where β(s, a) > 0 is the inverse of the average time spent in state s when
action a was chosen.

The total reward for a sample path are defined in the same way as for a
MDP.

Average reward, horizon T : R(ω) =
∑T

t=0 T (t)r(t)
U(T + 1)

(2.167)

Average reward, infinite horizon : R(ω) = lim inf
T →+∞

∑T
t=0 T (t)r(t)
U(T + 1)

(2.168)

Discounted reward, discount factor λ: R(ω) = (1− λ)
∑

t≥0

r(t)
∫ U(t+1)

U(t)
λudu.

(2.169)

It is noted that a Discrete Time Markov Decision Process (DTMDP) is a
particular case of a SMDP, where T (t) = 1 a.s , t ∈ N.

Uniformization

We show how an equivalent DTMDP can be associated to a CTMDP, and we
call this DTMDP the uniformization of the CTMDP. In order to avoid any
ambiguity, we use the superscript c to denote the CTMDP, and d to denote
the uniformization. For the CTMDP, let pc(s′, s, a) , rc(s, a) and βc(s, a)
denote the transition probabilities, average reward and inverse of time spent
in a state respectively. For the CTMDP to be equivalent to a DTMDP, we
need to assume that the inverse of the average time spent in any state is
bounded:

Assumption 2.8.
β∞ = max

s∈S,a∈A
β(s, a) < +∞. (2.170)

Physically, β∞ represents the fastest speed at which a state can be ex-
ited. Uniformization is based on sampling the CTMDP at exponentially
distributed times with parameter β∞.
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We define the uniformized DTMDP with transition probabilities:

pd(s′, s, a) =
pc(s′, s, a)β(s, a)

β∞
, (2.171)

pd(s, s, a) = 1− β(s, a)
β∞

, (2.172)

and rewards:

Average reward : rd(s, a) =
rc(s, a)

β∞
,

(2.173)

Discounted reward, discount factor λ rd(s, a) =
rc(s, a)(λ + β(s, a))

λ + β∞
.

(2.174)

Optimal control of the CTMDP can be achieved by finding the optimal con-
trol for the uniformized DTMDP.

Theorem 2.12 ([50]). An optimal policy for the uniformized DTMDP is also
optimal for the CTMDP.



Chapter 3

Packet scheduling

In modern radio access networks, channel quality information of active users
is available at the BS on the time scale of milliseconds, so that the users
can be selected dynamically for transmitting based on their channel qual-
ity. Channel-aware scheduling provides appreciable gains in terms of user
throughputs since users only transmit when their channel quality is good.
In this chapter we investigate how packet scheduling can be used as a SON
functionality. We are concerned with three main questions:

− the convergence of scheduling algorithms to steady-state throughputs
which maximize a utility function (α-fair utility in our case)

− the analytical evaluation of scheduling gains for different channel mod-
els

− dynamic adaptation of the scheduling strategy to perform coverage-
capacity optimization.

This chapter is based on our contributions [22, 23, 24, 28]. Channel-aware
scheduling has received a large amount of attention in the literature. An-
alytical performance evaluation for Proportional Fair (PF) scheduling over
Rayleigh-fading channels were given in [11] and [13]. The convergence of
PF scheduling was proven in [39]. [14] and [17] showed the impact on the
flow-level performance of the network serving elastic traffic through a queu-
ing analysis. [57] considered channel-aware scheduling without the full buffer
assumption: the backlog of active users evolves dynamically. The goal is to
ensure queue stability whenever it is possible. It was proven that a strat-
egy called max-weight scheduling ensures stability whenever possible. Max-
weight scheduling takes into account both channel quality and backlog to
choose which user should transmit.

73
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3.1 Channel-aware scheduling

3.1.1 The model

We consider N users communicating with a BS sharing the same radio re-
sources in downlink. We adopt a full buffer traffic model: each user always
has an infinite amount of data to transmit. The radio resources are divided
into M resource units. Time is slotted, and at each time slot for each resource
the BS scheduler picks a user for transmission based on their instantaneous
channel conditions. A scheduling policy P is defined by the choice of a user for
every scheduling instant for every resource (P m

t )t∈N,1≤m≤M . Namely P m
t = i

means that user i is selected for transmission at the t-th time slot on the
m-th resource. We define rm

i,t as the instantaneous throughput of user i for
the t-th time slot on resource m. We write rt = (rm

i,t)1≤i≤N,1≤m≤M .
We assume perfect channel knowledge: at the t-th time slot, the scheduler

knows rt and can make use of this information to choose the scheduled user.
Let ǫ > 0 denote a small averaging parameter, and define ri,t the average

throughput of user i at time t by the following recursive equation:

ri,t+1 = (1− ǫ)ri,t + ǫ
M
∑

m=1

δP m
t+1,ir

m
i,t+1, (3.1)

where δ denotes Kronecker’s delta.
This definition for the mean allocated throughput is more relevant to

reflect the QoS perceived by a user than using an arithmetic mean (which
would be replacing ǫ in (3.1) by 1

t
) because it induces a decay of past observed

values. ǫ is the parameter which controls the size of the averaging window,
and is related to the service we are considering. Namely, for applications such
as FTP, the average data rate allocated to a user during the file transfer time,
typically a few seconds, is a relevant performance indicator. For applications
such as voice however, the perceived quality is related to the average data
rate on a much smaller time scale, e.g 100ms, because of the play-out buffer
size. Hence the value of ǫ for FTP traffic shall be smaller than for voice
traffic.

We assume that ri,t = 0, and equation (3.1) can also be written:

ri,t = ǫ
t
∑

t′=0

(1− ǫ)t−t′

(

M
∑

m=1

δP m
t′ ,ir

m
i,t′

)

. (3.2)

Assumption 3.1. (i) {rt}t∈N
is i.i.d,

(ii) There exists rmax < +∞ such that rm
i,t ≤ rmax ∀t, i, m , a.s
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(iii) rt has a density with respect to Lebesgue measure denoted p,

The assumption that the instantaneous throughputs rt are i.i.d is valid as
long as we assume that the duration of a time slot is larger than the channel
coherence time. Consider for instance Rayleigh fading, then as stated in [34],
the autocorrelation of the channel fading for a single user between t and t+τ
is J0(ωMτ), where J0 is the 0-th order Bessel function and ωM -the maximum
Doppler shift.

We consider policies which only take into account the instantaneous
throughput. Namely a scheduling policy is given by a function
f : RN×M → SM with S the unit simplex in R

N and P [P m
t = i] = fm

i (rt).
With assumptions 3.1, applying scheduling policy defined by f , we have that
the expected average throughput converges to:

E [ri,t] →
t→+∞

Ri(f),

Ri(f) =
∫

RNM

(

M
∑

m=1

rm
i fm

i (r)

)

p(r)dr, (3.3)

and that the variance of the average throughput vanishes when ǫ→ 0+:

lim sup
t→+∞

E
[

(ri,t − Ri(f))2
]

→
ǫ→0+

0. (3.4)

Hence the average throughput of user i converges in mean square to Ri(f)
when ǫ→ 0+. We call R(f) the achieved throughput when applying schedul-
ing policy defined by f .

Definition 3.1. The set of achievable throughputs R is defined as the set
of throughputs given by all policies:

R = {r ∈ R
N : r = R(f), f : RN×M 7→ SM}. (3.5)

Proposition 3.1. The achievable throughput set R is a compact and convex
subset of RN .

Proof. Consider the vector space of functions f : RN×M → RN×M with norm
‖f‖∞ = sup

r∈RN×M

max
1≤i≤N

max
1≤m≤M

|fm
i (r)|. From its definition, f 7→ R(f) is a

linear application. R is continuous since max
1≤i≤N

|Ri(f)| ≤ Mrmax‖f‖∞. R is

the image of the set of functions f : RN×M 7→ SM which is closed and convex
by R. So R is convex and closed. R is also bounded by Mrmax, hence it is
convex compact.
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3.1.2 α-fair scheduling

Definition

As introduced in [46], the α-fair utility for allocation r ∈ R and α ∈ [0, +∞)
is:

U(r) =



























N
∑

i=1

log(d + ri) , α = 1

N
∑

i=1

(ri + d)1−α

1− α
, α 6= 1

(3.6)

where d > 0 can be chosen as small as desired and is only present to avoid
problematic behavior near 0.

Definition 3.2. The α-fair allocation is the allocation which maximizes U
on R.

For α > 0, U is a strictly concave function, and R is a compact convex
set, therefore the α-fair allocation is unique. For α = 0, there might exist
several α-fair allocations.

Intuitively, increasing α shall result in fairer allocations, namely users
with bad channel conditions get more resources, while decreasing α shall
result in increasing the sum throughput

∑N
i=1 ri. However, the notion of

measuring fairness is somehow unclear. [40] gives a formal justification to this
and shows that the α-fair allocation is in fact the allocation that maximizes
a fairness measure while preserving Pareto optimality. Namely the α-fair
allocation maximizes the fairness measure:

sign(1− α)





N
∑

i=1

(

ri
∑N

j=1 rj

)1−α




1
α

, (3.7)

while being Pareto optimal.
If the density p is known, then the α-fair allocation can be derived us-

ing convex programming techniques. We assume that this distribution is
unknown, and we use an algorithm similar to stochastic gradient to derive it.

Allocation rule

The proposed algorithm to derive the α-fair allocation is to adopt the fol-
lowing allocation policy:

P m
t+1 = arg max

1≤i≤N

rm
i,t+1

(ri,t + d)α
. (3.8)
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We prove in Section 3.2 that this policy converges to the α-fair allocation
when ǫ → 0+. We first give a heuristic justification for the scheduling rule.
Let (∆U)m

i denote the variation of utility if user i is chosen for transmitting
at time t + 1 on resource m, which we approximate with a first-order Taylor
expansion. If α = 1, the increase in utility for user i is:

log
(

(1− ǫ)ri,t + ǫrm
i,t+1 + d

)

− log(ri,t + d) = ǫ
rm

i,t+1 − ri,t

ri,t + d
+ o(ǫ). (3.9)

The decrease for the other users is:

log ((1− ǫ)ri,t + d)− log(ri,t + d) = −ǫ
ri,t

ri,t + d
+ o(ǫ). (3.10)

We add (3.9) and (3.10):

(∆U)i = ǫ

[

rm
i,t+1

ri,t + d
−

N
∑

i′=1

ri′,t

ri′,t + d

]

+ o(ǫ). (3.11)

If α 6= 1:

1
1− α

[

(

(1− ǫ)ri,t + ǫrm
i,t+1 + d

)1−α− (ri,t + d)1−α

]

= ǫ
rm

i,t+1 − ri,t

(ri,t + d)α
+ o(ǫ),

(3.12)

and:

1
1− α

[

((1− ǫ)ri,t + d)1−α − (ri,t + d)1−α
]

= −ǫ
ri,t

(ri,t + d)α
+ o(ǫ). (3.13)

We add (3.12) and (3.13):

(∆U)i = ǫ

[

rm
i,t+1

(ri,t + d)α
−

N
∑

i′=1

ri′,t

(ri′,t + d)α

]

+ o(ǫ). (3.14)

In both cases, for small ǫ, the optimal choice is:

P m
t+1 = arg max

1≤i≤N

rm
i,t+1

(ri,t + d)α
. (3.15)

α = 1 corresponds to a PF scheduler, and α = 0 to a Max Throughput (MTP)
scheduler.
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3.2 Convergence of α-fair schedulers

In this section we give a convergence analysis of α-fair scheduling, using
the ODE technique which has been used previously in [38] and [39] to show
the convergence of the PF scheduler. We use the stochastic approximation
results presented in section 2.3. We first work with α > 0 fixed, and the case
α = 0 is studied separately.

The scheduling rule (3.8) is clearly a stochastic approximation scheme.
We define the average drift:

h(r) =
∫

RNM







M
∑

m=1

rm
i 1

{i=arg max
i′

rm
i′

(d+r
i′ )α }

(r)





 p(r)dr, (3.16)

and:
g(r) = h(r)− r. (3.17)

The ODE is:
ṙ = g(r). (3.18)

3.2.1 The mean ODE

Proposition 3.2. h is positive, bounded and Lipschitz continuous. Further-
more:

h(r) = r , h(r′) = r′ , r′ ≥ r =⇒ r′ = r. (3.19)

Proof. h is positive and bounded by Mrmax.
We first assume that ‖r‖ ≤ 1, let Pi,j,r,r′,m be the following quantity:

Pi,j,r,r′,m = P

[{

rm
i

(d + ri)α
≥ rm

j

(d + rj)α

}

∪
{

rm
i

(d + r′
i)α
≤ rm

j

(d + r′
j)α

}]

,

which we can rewrite:

Pi,j,r,r′,m = P

[

rm
j

(

d + ri

d + rj

)α

≤ rm
i ≤ rm

j

(

d + r′
i

d + r′
j

)α]

. (3.20)

Let Frm
i

(x) = P[rm
i ≤ x],

Pi,j,r,r′,m = E

[

Frm
i

(

rm
j

(

d + r′
i

d + r′
j

)α)

− Frm
i

(

rm
j

(

d + ri

d + rj

)α)]

. (3.21)

We have assumed ‖r‖ ≤ 1, so there is a constant Kα such that:
∣

∣

∣

∣

∣

(

d + ri

d + rj

)α

−
(

d + r′
i

d + r′
j

)α∣
∣

∣

∣

∣

≤ Kα‖r − r′‖. (3.22)
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x 7→ Frm
i

(x) is Lipschitz continuous since we have assumed rm
i to have a

density with respect to the Lebesgue measure, so for a certain constant KF :

Pi,j,r,r′,m ≤ E [KαKF‖r − r′‖rj ] ≤ KαKF rmax‖r − r′‖. (3.23)

We can bound the variation of h:

‖h(r)− h(r′)‖ ≤ 4rmax

∑

i6=j

∑

1≤m≤M

Pi,j,r,r′,m. (3.24)

We conclude that there exists a constant Kh so that:

‖h(r)− h(r′)‖ ≤ Kh‖r − r′‖. (3.25)

We have proved that h is Lipschitz continuous for ‖r‖ ≤ 1. Let K2 ≥ 1, we
have that :

h(r) = h(
r + d

K2

− d). (3.26)

We combine this with (3.25), with K2 large enough:

‖h(r)− h(r′)‖ = ‖h(
r + d

K2
− d)− h(

r′ + d

K2
− d)‖

≤ Ch

K2
‖r − r′‖

≤ Ch‖r − r′‖.

So we have proved that h is globally Lipschitz continuous.
The last proposition is true since all components of h cannot increase

when all components of r increase.

Existence of a solution to the ODE

We have to prove that the ODE has solutions on R+. We have that h is
Lipschitz continuous so the Picard-Lindelof theorem assures us that it has
a unique local solution. Furthermore, we know that there exists a unique
maximal solution defined on some maximal interval [0, t0[. h is bounded by
Mrmax so ‖r(t)‖ ≤ ‖r(0)‖+ tMrmax, therefore t0 = +∞, or else the solution
is not maximal.

3.2.2 Convergence to a unique limit

Monotone dynamical systems

We first state some results from the theory of monotone dynamical systems,
and the reader can refer to [55] for their proofs.
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We denote by Γt(r), r ∈ (R+)N the value at time t of the solution to
the ODE starting at r. We define the orbit of r by O(r) = {Γt(r)|t ≥ 0}
and the limit set of r by ω(r) = ∩t≥0 ∪s≥t Γs(r). r is called an equilibrium
point if O(r) = x, and we denote by E the set of equilibrium points. r is
called a quasi-convergent point if ω(r) ⊂ E and we denote by Q the set of
quasi-convergent points. If r ≤ r′ ⇒ Γt(r) ≤ Γt(r′) ∀(r, r′) ∈ (R+)N × (R+)N

∀t ∈ R+, then we say that Γ is monotone. We have the following theorems:

Theorem 3.1. If Γ is monotone and r < r′ then either:

(i) ω(r) < ω(r′) , or

(ii) ω(r) = ω(r′) ⊂ E.

Theorem 3.2. If Γ is monotone then Q is dense in (R+)N .

We show that those results can be applied to the ODE we are considering,
using the following comparison theorem:

Theorem 3.3. We consider the ODE
.
r= g(r′). Let g : (R+)N → RN ,

verifying:

(i) g is continuous

(ii) The solution to the ODE is unique for every initial condition

(iii) r ≤ r′ and ri = r′
i ⇒ gi(r) ≤ gi(r′)

(iv) For T ≥ 0, (r, δ) ∈ (R+)N × (R+)N , we have that:

sup
0≤t≤T

‖Γt(r)− Γt(r + δ)‖ →
δ→0

0. (3.27)

Then Γ is monotone.

Condition (iii) is called the Kamke condition.
The ODE we are considering satisfies those conditions. (i) and (ii) have

been proved previously. (iii) comes from the fact that ri → 1
(d+ri)α is decreas-

ing. To prove (iv), let T > 0, since h is Lipschitz continuous we can apply
Gronwall’s lemma:

‖Γt(r)− Γt(r + δ)‖ ≤ ‖δ‖eK3t, (3.28)

for a certain constant K3. We then have that:

sup
0≤t≤T

‖Γt(r)− Γt(r + δ)‖ ≤ ‖δ‖eK3T →
‖δ‖→0

0. (3.29)

So the conditions of the previous theorem are valid.
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Convergence for r(0) = 0

By noticing that g(0) > 0, the following theorem proves that the solution
starting at 0 converges to a certain r∗.

Theorem 3.4. If the ODE verifies the Kamke condition then any solution
starting at r with g(r) > 0 converges to an equilibrium point.

We show that all solutions converge to the same limit.
We have proved that ω(0) = {r∗}. Let r > 0 be an arbitrary initial

condition, and r′ ≥ r with r′ ∈ Q since Q is dense in (R+)N . We know that
ω(r′) ⊂ E since r′ ∈ Q, let us assume that ω(0) < ω(r′). Let r′′ ∈ ω(r′),
we have that h(r′′) = 0 and r′′ > r∗, which contradicts (3.19). So ω(r′) =
ω(0) = {r∗}, and finally ω(r) = {r∗} ∀r ≤ 0, in other words all solutions
converge to r∗.

Optimality

Finally, we prove that the scheduling strategy is optimal, namely that any
other scheduling strategy achieves lower utility. We differentiate the utility
function:

.

U (r(t)) =
N
∑

i=1

hi(r(t))− ri(t)
(d + ri(t))α

. (3.30)

We prove that θ∗ is a local maximum of U on R. Let f : (R+)NM → SM an
arbitrary allocation rule, from the definition of h we have that:

N
∑

i=1

Ri(f)
(d + ri(t))α

≤
N
∑

i=1

hi(r(t))
(d + ri(t))α

. (3.31)

Let rf (t) and r(t) the trajectories implied by the new and the usual
(from equation (3.15)) allocation rules respectively, both starting at r∗. By
combining (3.30) and (3.31) at t = 0 we have that:

.

U (rf(t))|t=0 ≤
.

U (r(t))|t=0 ≤ 0. (3.32)

Therefore r∗ is a local maximum of U on R. Since U is strictly concave on
R, we have proved that the scheduling rule achieves optimal utility.

Application to the α-fair scheduler, α = 0

The case α = 0 is a bit different since U is linear, and not strictly concave.
However the proof is simpler since the scheduling strategy does not depend
on the mean throughput. The ODE is:

.
r= g(r) = h(0)− r, (3.33)
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and the solution is r(t) = e−tr(0)+(1−e−t)h(0), which converges to a unique
limit h(0). It shall be noted that the limit is unique because P

[

rm
i = rm

j , i 6= j
]

=

0. If P
[

rm
i = rm

j , i 6= j
]

> 0 it might not be the case, for example consider
the case where all the ri are constant and equal to 1, any point in the simplex
is a limit throughput. Since we have assumed independence of the channel
between two scheduling instants and that U is linear, the policy that chooses
the user with the best channel also maximizes U over R.

3.3 Calculation of scheduling gain

We are interested in calculating the gain obtained by channel-aware schedul-
ing. The scheduling gain is the ratio between the throughput allocated to a
user and the throughput allocated to this user by a Round Robin (RR) sched-
uler. The RR scheduler is a non-opportunistic scheduler which allocates each
resource an equal amount of time to each user. To avoid confusion, we de-
note by rRR the RR throughput and rα the α-fair throughput. The RR
throughput is:

rRR
i =

1
N

E

[

M
∑

m=1

rm
i

]

. (3.34)

The scheduling gain is evaluated for the channel models introduced in
subsection 2.2.4. For each channel model, we state the distribution of the
instantaneous throughput. We work with a general link curve φ to make our
calculations applicable to practical systems (except in the MIMO case). If
we are only interested in Shannon capacity, φ can be taken according to the
Shannon formula. We denote by Lφ the Laplace transform of φ and it plays
an important role for our calculations. For all scheduling gain calculations,
we add two assumptions.

Assumption 3.2. (i) {rm
i }1≤m≤M ⊥⊥ {rm

i′ }1≤m≤M if i 6= i′.

(ii) rm
i

d= rm′

i

For a general α, the scheduling gain cannot be evaluated in closed form.
We calculate the scheduling gain for three particular cases: α = 0 (MTP) ,
α = 1 (PF) and α→ +∞ (Max-Min Fair (MMF)).

3.3.1 Rayleigh-fading AWGN

For the Rayleigh-fading AWGN channel, the instantaneous throughput on a
resource can be described by:

rm
i = φ(SiZ

m
i ), (3.35)
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with Zm
i an exponentially distributed random variable with mean 1, Si - the

mean SINR of user i on a resource. From assumptions 3.2, we have that
{Zm

i }1≤i≤N,1≤m≤M are independent.

RR

The RR throughput is:

rRR
i =

M

NSi

Lφ

( 1
Si

)

. (3.36)

MTP ( α = 0 )

For the MTP (α = 0), the probability of choosing user i for resource m is:

P [SiZ
m
i ≥ Si′Zm

i′ , i′ 6= i] . (3.37)

The throughput is then:

r0
i =

M

Si

∫ +∞

0
φ(x)

∏

i′ 6=i

(1− e
− x

S
i′ )e− x

Si dx. (3.38)

By developing the product, we obtain the following expression:

r0
i =

M

Si

N−1
∑

i′=0

(−1)i′ ∑

a1<...<ai′ ,aj 6=i ∀j

Lφ





1
Si

+
i′
∑

j=0

1
Saj



 . (3.39)

PF ( α = 1 )

Results for the PF case (α = 1) were given in [13]:

r1
i =

1
Si

N−1
∑

i′=0

(

N − 1
i′

)

(−1)i′

Lφ

(

i′ + 1
Si

)

. (3.40)

It is noted that formula (3.40) was derived based on the approximation that
the scheduled user is the user who maximizes the ratio between his instan-
taneous SINR and mean SINR. Strictly speaking, the PF schedules the user
who maximizes the ratio between instantaneous and mean throughput.

In particular, if φ is a linear function we have the expression [11]:

r1
i

rRR
i

=
1
Si

N−1
∑

i′=0

(

N − 1
i′

)

(−1)i′ 1
Si

S2
i

(i′ + 1)2
=

N
∑

i′=1

1
i′

, (3.41)

which is asymptotically equivalent to log(N).
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MMF ( α→ +∞ )

The case α → +∞ is analytically tractable, and of particular interest for
the dynamic alpha policy we address in the next section. Since for t >
1, P [ri,t = ri′,t , i 6= i′] = 0 and P [rm

i = 0] = 0, the scheduling rule (3.8))
becomes:

P m
t+1 = arg min

1≤i≤N
(ri,t). (3.42)

All users have the same throughput for a MMF scheduler. We know that
r∞

i exists. Assume that r∞
i > r∞

j ≥ 0. So there exists T so that user i never
transmits after T , and r∞

i = 0 , a contradiction. Therefore, r∞
i = r∞

i′ , ∀i, i′.
We know that when user i is alone in the cell, it’s throughput is:

M
∫ +∞

0
φ(x)

e
− x

Si

Si

dx =
M

Si

LΦ

( 1
Si

)

, (3.43)

and since the scheduling rule (3.42) does not depend on the instantaneous
throughput, we have that r∞

i = pi
M
Si

LΦ( 1
Si

), with
∑N

i=1 pi = 1 and r∞
i = r∞

i′ ,
∀i, i′. Hence:

r∞
i =





N
∑

i′=1

Si′

MLφ( 1
Si′

)





−1

. (3.44)

This formula is useful because it enables us to determine analytically
which users can be covered by adjusting the α, and which users cannot be
covered. Scheduling them would simply waste resources and they therefore
should be ignored when deciding which α to use.

3.3.2 Multi-tap Rayleigh-fading AWGN

For the multi-tap Rayleigh-fading AWGN channel, we consider CDMA using
a RAKE receiver as described in 2.2.4. Using formula (2.75), the instanta-
neous throughput on a resource can be described by:

rm
i = φ(SiZ

m
i ) , (3.45)

Zm
i =

L
∑

l=1

Zm,l
i . (3.46)

with {Zm,l
i }l L independent exponentially distributed random variables with

means {h2

l }l, Si - the mean SINR of user i on a resource. We recall that h
2

l is
the average relative power of the l-th channel tap, and

∑L
l=1 h

2

l = 1. Si takes
into account the inter-code interference through the orthogonality factor.
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We write pZ the probability density function (p.d.f) of Zm
i . Calculating

the Laplace transform of pZ and using a partial fraction expansion, [21] shows
that:

pZ(x) =
L
∑

l=1

pl

h
2

l

e
− x

h
2
l , (3.47)

with:

pl =
∏

l′ 6=l

h
2

l

h
2

l − h
2

l′

. (3.48)

We have to assume that h
2

l 6= h
2

l′ , l 6= l′, otherwise the (pl)1≤l≤L are not
defined. Actually, even in the case where some eigenvalues are equal, [60]
shows that it is possible to separate them artificially by a small value, with
results close to the exact solution. Furthermore the cumulative distribution
function (c.d.f) of the fast-fading is

FZ(x) =
L
∑

l=1

pl(1− e
− x

h
2
l ) = 1−

L
∑

l=1

ple
− x

h
2
l . (3.49)

The calculation of scheduling gains is done similarly to the single-tap
Rayleigh fading case. We do not develop the expression for the MTP case.

RR

The RR throughput is:

rRR
i =

M

NSi

L
∑

l=1

pl

h
2

l

Lφ





1

h
2

l Si



 . (3.50)

PF ( α = 1 )

In order to reduce notational complexity, we use the multi-index notation:
given κ ∈ NL, x ∈ RL and n ∈ N, we write |κ| = ∑L

l=1 κl, xκ =
∏L

l=1 xκl

l , and
(

n

κ

)

= n!
∏L

l=1
κi!

, and < κ, x >=
∑L

l=1 xlκl.

The probability of being chosen by the PF scheduler is the probability
to have the best ratio between instantaneous SINR and mean SINR. The
binomial formula gives:

[FZ(x)]N−1 =
N−1
∑

n=0

(

N − 1
n

)

(−1)n[1− FZ(x)]n. (3.51)
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We evaluate each term of the sum by the multinomial formula:

[1− FZ(x)]n = [
L
∑

l=1

ple
− x

h
2
l ]n =

∑

|κ|=n

(

n

κ

)

pκe
−x<κ, 1

h
2 >

, (3.52)

where 1

h
2 ∈ RL is the vector whose components are the 1

h
2
l

, 1 ≤ l ≤ L.

Summing the terms in (3.51) gives:

[FZ(x)]N−1 =
∑

0≤|κ|≤N−1

(

N − 1
κ, N − 1− |κ|

)

(−1)|κ|pκe
−x<κ, 1

h
2 >

, (3.53)

where
(

N−1
κ,N−1−|κ|

)

=
(

N−1
κ

)

1
(N−1−|κ|)!

We multiply (3.53) by the p.d.f of the
fast-fading:

[FZ(x)]N−1
L
∑

l=1

pl

h
2

l

e
− x

h
2
l

=
∑

0≤|κ|≤N−1,1≤l≤L

(

N − 1
κ, N − 1− |κ|

)

(−1)|κ| plp
κ

h
2

l

e
−x(<κ, 1

h
2 >+ 1

h
2
l

)
. (3.54)

The scheduling throughput can then be evaluated by:
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∫ +∞

0
Φ(xSi)[FZ(x)]N−1

L
∑

l=1

pl

h
2

l

e
− x

h
2
l dx

=
∑

0≤|κ|≤N−1,1≤l≤L

(

N − 1
κ, N − 1− |κ|

)

(−1)|κ| plp
κ

h
2

l

LΦ





< κ, 1

h
2 > + 1

h
2
l

Si



 .

(3.55)

It is noted that (3.40) is a particular case of (3.55) for L = 1.

MMF ( α→ +∞ )

Using the same argument as previously, the MMF throughput is:

r∞
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N
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Si′
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pl

h
2
l

Lφ

(
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h
2
l Si′

)









−1

. (3.56)
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3.3.3 MIMO Rayleigh-fading AWGN

We turn to the MIMO Rayleigh-fading AWGN channel. We assume that
OFDMA is used, and that each resource is a frequency resource block with
bandwidth WP RB. Using the Gaussian approximation introduced in 2.2.4,
the instantaneous throughput on a resource can be described by:

rm
i ≡ N (ntµi, σ2

i ), (3.57)

with:

ζ =
nr

nt

,

χ =
1
2





1 + ζ +
1

Sm
i

−
√

√

√

√

(

1 + ζ +
1

Sm
i

)2

− 4ζ





 ,

µi =
WP RB

log(2)
[ζ log(1 + (1− χ)Sm

i ) + log(1 + Sm
i (ζ − χ)− χ] ,

σ2
i = −

W 2
P RB log

(

1− χ2

ζ

)

log(2)2
.

with Sm
i the mean SINR on resource m. In the PF case and MTP case,

the throughput is not available in a completely analytic form, however, they
are given as one dimensional integrals involving the Gaussian distribution,
and can be calculated rapidly using numerical integration. As shown in
[32] if (nt, nr) → +∞ with nr

nt
bounded, we have that σi

µi
→ 0. Namely the

instantaneous throughput becomes less variable when the number of antennas
increase, and the benefits of channel-aware scheduling decrease. This effect
is known as channel hardening.

RR

The RR throughput is:

rRR
i =

M

N
µi. (3.58)

We write F the c.d.f of the standard normal distribution.

MTP ( α = 0 )

For the MTP scheduler, the throughput is given by the following integral:

r0
i =

M√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

µi − µj + zσi

σj

)



 e− z2

2 dz. (3.59)
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PF ( α = 1 )

For the PF scheduler, the throughput is calculated as the integral:

r1
i =

M√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

z
µiσj

µjσi

)



 e− z2

2 dz. (3.60)

MMF ( α→ +∞ )

For the MMF, the throughput is:

r∞
i = M

(

N
∑

i′=1

1
µi′

)−1

. (3.61)

3.4 Numerical experiments

In this section we illustrate our scheduling gains calculations by numerical
experiments. We compare our formulas with the results obtained by simu-
lating the channel fading for all users and the α-fair scheduler for 1000 time
slots. A 95% confidence interval is given for any simulated value.

3.4.1 Rayleigh-fading AWGN

We first consider the Rayleigh-fading AWGN, which is appropriate to model
narrow-band fading and OFDMA systems such as LTE. Figure 3.1 shows
the scheduling gain of a PF scheduler, with N users with Si = 6dB ∀i.
Figure 3.2 shows the scheduling gain of a MTP scheduler, with N users with
S1 = 6dB , Si = 12dB for i ≥ 2. We are interested in the gain of the first
user. The gain is not the same for everyone since the scheduler allocates more
resources to users in good radio conditions i.e with high mean SINR. We can
see on both figures that our analytical formulas approximate the simulated
values quite well, and we can also see on Figure 3.2 that the gain for user 1
decreases when N increases, since he has a smaller mean SINR.

Figure 3.3 shows the scheduling gain of an α-fair scheduler, for 2 users
with S1 = 6dB , S2 = 12dB. This case illustrates what happens when a
user is near the BS and the other one is far. By far we mean that either the
user is physically far from the BS, or he is in an area with very deep shadow
fading. In both cases this user has a low mean SINR. The larger α is, the
larger is the gain for users with poor channel conditions, and so it is possible
to manage the coverage for users at cell edge by adjusting α dynamically.
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Figure 3.1: PF scheduling gain as a function of the number of users for
Si = 6dB ∀i
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Figure 3.2: MTP scheduling gain as a function of the number of users for
user 1 with S1 = 6dB and Si = 12dB for i ≥ 2
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Figure 3.3: Scheduling gain as a function of α for 2 users and S1 = 6dB , S2 =
12dB

We have assumed that the fast-fading of the interfering signals can be
ignored since the number of interfering signals is large, meaning that the
only source of variability of the instantaneous SINR is the fading of the
useful signal. We simulate here the distribution of the instantaneous SINR
when the useful signal as well as interfering signals are fading and follow
a Rayleigh model. We compare it with the exponential distribution, using
the model for path loss and shadowing described in appendix 7.1, only con-
sidering interference from first-tier neighbors. Figure 3.4 shows the p.d.f of
the instantaneous SINR (normalized by the mean SINR) for cell center users
and cell edge users, and we can see that those distributions are very close to
the exponential distribution. Furthermore, we can see that the exponential
approximation is worse when considering cell edge users compared with cell
center users. This is logical since cell edge users have one or two dominant
interferers, while cell center users are equally interfered by the 6 neighboring
cells.

3.4.2 Multi-tap Rayleigh-fading AWGN

We turn to the multi-tap Rayleigh-fading AWGN channel, which is appro-
priate to model wide-band fading and CDMA systems such as High Speed
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Figure 3.4: Impact of the interference fading on the instantaneous SINR
distribution

Packet Access (HSPA). We show the scheduling gain of a PF scheduler with
up to 10 users, all users having a mean SINR of 6dB. Figure 3.5 shows
the scheduling gain of a PF scheduler with the Vehicular A model obtained
by formula (3.55) and by simulation. Figure 3.6 shows the scheduling gain
of the PF scheduler for the models stated previously, and we can see that
it decreases appreciably depending on the fading model, which shows that
frequency-selectivity results in smaller scheduling gains. We can conclude
that frequency-selectivity is an adverse effect which diminishes the diversity
gain of the PF scheduler.

3.4.3 MIMO Rayleigh-fading AWGN

Lastly let us consider the MIMO Rayleigh-fading AWGN channel, which is
appropriate to model narrow-band fading (OFDMA) with multiple antennas,
as it is the case for LTE systems featuring MIMO. We compare the distribu-
tion of the capacity of a MIMO channel with its Gaussian approximation, for
nt = nr = 2. We draw the channel matrix 10000 times and calculate the cor-
responding capacity distribution (with formula (2.77)), which we compare to
the Gaussian distribution with mean and variance given by (3.57). Figure 3.7
shows the comparison of the mean of the two distributions for different val-
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Figure 3.5: PF scheduling gain as a function of the number of users for
Si = 6dB ∀i, Vehicular A model
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Figure 3.7: Mean capacity for MIMO 2x2, comparison between asymptotic
distribution and simulations.

ues of the mean SINR. Figure 3.8 shows the comparison of the c.d.f of the
two distributions for a mean SINR of 5dB. We can see on those two figures
that the values obtained by the Gaussian approximation are very close to the
simulated values obtained by drawing channel matrices. Hence approximat-
ing the distribution of the capacity by a Gaussian distribution is reasonable,
even when nt = nr = 2. Figure 3.9 shows the throughput per user of a
PF scheduler with Sm

i = 5dB, ∀i, m. For MIMO 2x2, the PF scheduling
gain is of 2.2 for 10 users, while it is of 2.7 in the single antenna case (see
figure 3.1). The effect of channel hardening is already visible for MIMO 2x2
and considerably diminishes the benefits of channel-aware scheduling.

3.5 Coverage-capacity optimization

3.5.1 Algorithm

Based on the scheduling gain calculations of the previous section, we pro-
pose a simple and efficient SON algorithm that optimizes cell-coverage while
minimizing capacity losses by adjusting α dynamically. We say that a user
is covered if his mean throughput is higher than a certain fixed threshold
Thmin, which is a parameter of the service we are considering, for example
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the minimal throughput to watch a video with the lowest quality.

First let us state the optimization objective: we consider a particular
service with the corresponding Thmin and we want to change the α parameter
dynamically in order to cover the maximum number of users, using the above
definition for coverage. However, we have to be careful since increasing α
can potentially increase the number of covered users, but also diminishes the
global cell throughput. Therefore we want to find the minimal α that covers
the maximum number of users.

To this end, the formula for the scheduling gain with α = +∞ is of
particular interest: if α = +∞ results in covering all users, this means that
we can cover everyone providing that α is large enough. If nobody is covered,
namely the users with low mean SINR cannot be covered, and we should not
allocate any resource to them.

In order to determine the users that can be covered with large enough
α, we ignore the user with the worst mean SINR, recalculate the α = +∞
throughput and keep doing so until we are able to cover everyone.

The algorithm proceeds the following way: at each iteration it observes
the number of covered users, then it determines the users that can be covered
using the technique stated above, and finally the α is adjusted. If some of
the users that could have been covered were not covered, the α is increased,
and if all coverable users have been covered, the α is diminished with a small
probability Pǫ, and stays the same with probability 1− Pǫ. The idea is that
the environment might have changed, and that the current α might not be
the lowest that enables us to cover all coverable users. Pǫ therefore shall be
chosen to reflect the speed at which the environment changes.

The following notations are used: we consider BS s; αs is the value of
α for s, Ns - the number of users that s can cover and Ñs - the number of
users effectively covered at the last period. (α(j))1≤j≤Jmax

is the allowed set of
values of α, e.g. {1, ..., 5} in the present work. js is the index of the current
α, namely αs = α(js). The algorithm is described in Table 3.1.

It is noted that in Table 3.2 it is sufficient to calculate the throughput
of a user in i ∈ {1, ..., N} \ I since the MMF scheduler allocates the same
throughput to all users in i ∈ {1, ..., N} \ I and allocates 0 to users in I.

It is noted that this algorithm has all the necessary features to be a ro-
bust and implementable SON algorithm: it is decentralized since each station
adjusts its own parameters according to its own KPIs without any communi-
cation with neighboring cells; it is not computationally demanding; and it is
scalable since the introduction of new BSs does not disturb its functioning.
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For each BS s:
Initial phase:
1. Calculate Ns using (Table 3.2)
2. Try every αs ∈ (α(j))1≤j≤Jmax

once
3. Choose the minimal js so that αs = α(js)

that covers Ns users.
Repeat:
4. Calculate Ns using (Table 3.2)
5. Set αs = α(js) and observe resulting Ñs

If Ñs < Ns:
6. js ← min(js + 1, Jmax)

If nk = Nk:

7. js ←
{

max(js − 1, 1) with probability Pǫ

js with probability (1− Pǫ)

Table 3.1: Capacity coverage algorithm

Initial phase:
1. I = ∅
2. Calculate r∞

i for a certain
i ∈ {1, ..., N} \ I

While r∞
i < Thmin:

3. i∗ = arg mini∈{1,...,N}\I Si

4. Add i∗ to I
5. Calculate r∞

i for a certain i ∈ {1, ..., N} \ I
ignoring users in I

Result:
6.Nk = N − |I|

Table 3.2: Calculation of Nk

3.5.2 Admission Control

It shall be noted that the MMF throughput is also useful to define an ad-
mission control rule. Given the mean SINR of the users in a cell, if a new
user arrives, we can calculate the throughput of the MMF scheduler and de-
termine whether we are able to cover this user with α sufficiently large. If
it is not the case the new user shall not be admitted. The benefit of such
an admission rule over traditional methods is that we can be sure that we
are always able to cover all users if they do not move too fast, so that their
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mean SINR does not change too drastically over time. Furthermore since
calculating the MMF throughput simply involves looking at most N times in
a table of values, N being the number of users in the cell, this is a practically
implementable admission rule.

3.5.3 Simulation

We implement the coverage-capacity algorithm described above in a realistic
OFDMA network simulator with 33 stations to observe its average perfor-
mance. We use a semi-dynamic network simulator with time resolution of
1s (see [53] for a detailed description of a semi-dynamic simulator). The
propagation model is explained in appendix 7.1. Users arrive in the network
according to a Poisson process. Admission control is done with the algorithm
described previously. We consider a streaming service with constant session
length. A user quits the service if he is not covered during 10 consecutive
seconds. The number of users that quit the service in such a way is a measure
of coverage, and we show that the proposed algorithm reduces it appreciably.

We compare the proposed algorithm to a reference scenario in which
BSs apply a PF scheduler all the time, that is αs = 1, ∀s. It is noted
that admission control is the same for both algorithms for the comparison
between the proposed algorithm and the reference one, hence the coverage
improvement is not related to the admission control strategy. Table 3.3
summarizes the relevant simulation parameters.

3.5.4 Simulation Results

Figure 3.10 shows the evolution of α during the simulation for a particular
BS, and Figure 3.11 the number of users served by this BS. We can clearly
see that the algorithm keeps α low when the number of users is small, in order
not to loose capacity, and increases α when the number of users increases in
order to keep all users covered. Figure 3.12 shows the percentage of users
that have left the network because of a lack of coverage, namely because they
did not receive the minimal bitrate for 10 consecutive seconds as described
above. The proposed algorithm allows to reduce the percentage of users
leaving the network from 4% which is generally considered unacceptable in
terms of QoS to less than 1%. Figure 3.13 shows the average BS throughput.
The capacity loss caused by the coverage improvement is on average 4%,
which is a relatively small price to pay for the important reduction of calls
dropped because of coverage loss. It is noted that the drop call rate is a
much more important QoS metric than the global system throughput.
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Figure 3.10: Evolution of α as a function of time for a BS.
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Figure 3.12: Number of users leaving because of lack of coverage as a function
of arrival rate.
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Figure 3.13: Average BS throughput as a function of arrival rate.
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Simulator parameters
Spatial resolution 25m× 25m
Time resolution 1s
Simulation time 10000s
User speed 5km/h
Average session length 120s
Coverage threshold 256kb/s

Network parameters
Number of Physical Resource Blocks (PRBs) 12
Size of a PRB 180kHz
Number of stations 33
Cell layout 11 eNB’s × 3 sectors
Average inter-cell distance 1km
Type of service Streaming

Propagation
Thermal noise −174dBm/Hz
Path loss(d in km) 128 + 37.6 log10(d) dB
Shadowing standard deviation 6 dB
Antenna configuration MIMO 2× 2

Table 3.3: Model parameters



Chapter 4

Load balancing

In this chapter we study the problem of load balancing in cellular networks.
In operational networks, certain BSs are noticeably more loaded than others
due to the scarcity of available locations for deploying BSs and the non-
uniformity of mobile traffic. Those imbalances in BSs load evolves through
the day due to daily traffic patterns. Typical situations include:

− business districts at the end of the afternoon when customers leave
their office to go back home,

− a stadium at the end of a football match, where a large amount of
customers call as soon as the match ends,

− train and subway stations during busy hours.

In these situations, the loads of a small group of BSs become too high to
ensure good QoS in the area and a large amount of dropped/blocked calls
occur. The simplest solution is to over-dimension the network in those areas
and deploy a large number of BSs to cope with the traffic peak. This solution
is simple but costly and might not be practical if sites with good propagation
conditions are scarce.

The solution we explore here is based on SON: BSs can monitor their
loads and control the amount of traffic they absorb to avoid overload. Users
attach themselves to the BS with the strongest received pilot power. If a
BS is more loaded than its neighbors then it diminishes its transmitted pilot
power, which causes the geographical area it serves to shrink, and reduces its
load by letting its neighbors absorb more traffic. An update equation for the
pilot powers is given to equalize the loads. The load balancing algorithm is
distributed since it requires that BSs exchange their loads with a single ref-
erence BS. In practical settings, a load balancing procedure can be triggered

101
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by an alarm based on BSs loads. The load balancing can then be applied to
the overloaded BS and group of its neighbors. If used this way, our algorithm
is fully scalable.

We consider flow-level dynamics: users enter the network dynamically
according to a random arrival process, download a file and exit the net-
work when the download is complete. The load estimates depend on random
arrivals and departures, so they are by nature noisy. Using stochastic ap-
proximation, we prove that the proposed algorithm converges to a set on
which all loads are equal in spite of the load estimation noise. Our algorithm
ensures that the network is stable (users do not accumulate to infinity in at
least one of the BSs) whenever it is possible.

Our algorithm is designed to work on a time scale which is slower than
users arrivals and departures, but faster than the speed at which traffic in-
tensity and distribution changes. Namely, each BS estimates its load and
changes its transmit power every T seconds. T should be larger than the typ-
ical flow duration (a few seconds), and faster than the time scale on which
traffic changes (at least several tens of minutes). If T is too small, users
which arrive at the cell edge undergo a large amount of handovers during
their sojourn in the network which creates both high overhead and dropped
calls. If T is too large, the algorithm will not be able to track the changes in
traffic, which is the main point of SON. The order of magnitude of T should
be of 1 minute to ensure good performance.

The algorithm proposed here is a local algorithm, since it is a applied to
a station and its neighbors only. An interesting extension of this work would
be to analyze the convergence of a gossip-like ([19]) procedure where this
local algorithm is applied at multiple locations asynchronously.

The material of this chapter is based on our contributions [26, 8]. The
load balancing was introduced in [26] in the context of macro-cell networks,
and load balancing in the context of femto-cells networks was analyzed in
[8]. The load balancing mechanism is extended to relay-enhanced networks
in chapter 5. Flow-level analysis for wireless networks was introduced in [14].
[17] showed that gains of channel-aware scheduling could be included in the
model. This in particular makes the calculations of scheduling gains of chap-
ter 3 fully applicable. The proofs for all the results can be found in section 4.4.
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4.1 Flow-level dynamics

4.1.1 Traffic model

We consider a wireless network in a downlink scenario, serving elastic traffic,
without user mobility. The network area A ⊂ R2 is bounded and convex.
Users enter the network according to a Poisson process on A×R with measure
λ(dr × dt) = λ(r)dr × dt , r ∈ A. This point process models the instants of
arrivals and their locations. Users download a file of size σ, with E [σ] < +∞
and we assume independence between the arrival process and the file sizes.
Users do not move while they are downloading their file and they leave the
network when the download finishes. There are NBS BSs, with As the area
served by BS s. We write Rs(r) the data rate of a user located at r served
by BS s when there are no other users in s.

The time scale on which users arrive and depart is much slower than fast-
fading, so that in each state of the network, each user experiences a data
rate which is equal to their data rate averaged on the fast-fading. The effect
of fast-fading is only visible in our model through its impact on the average
data rate.

As done in [14], the network can be modeled by NBS M/G/1/PS (see 2.1.2)
queues and the stability region of the network is given by Theorem 4.1.

Theorem 4.1. Define the load of BS s, ρs by:

ρs = E [σ]
∫

As

λ(r)
Rs(r)

dr, (4.1)

and BS s is stable if ρs < 1, and unstable if ρs > 1. The network is stable if
max

s
ρs < 1, and unstable if max

s
ρs > 1.

A BS is stable if the probability distribution of the number of active users
in this BS tends to a stationary distribution. A BS is unstable if the number
of active users grows to infinity. The total traffic intensity is E [σ]

∫

A
λ(r)dr,

and the network capacity is the maximal value of the total traffic intensity
which ensures stability of the network.

Assume that when ns users are simultaneously served by BS s, the data
rate of a user served by BS s and located at r is Rs(r)g(ns)

ns
, with n→ g(n) a

non-decreasing function. We define the maximal gain:

g∗ = lim
n→+∞

g(n). (4.2)

The function g(n) stands for the multi-user diversity gain which is a charac-
teristic of wireless networks, due to fast-fading. We have shown in chapter 3
that g(n) could be calculated for most physical layer models of interest. Then
Theorem 4.1 applies when replacing ρs by ρs

g∗ . See for example ([17]).
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4.1.2 Load estimation

A user arriving in the network attaches himself to the BS with the strongest
received pilot signal, and the BSs can modify their transmit pilot power in
order to adjust their loads. We show a method to do so based solely on
network measurements (user feedback), in a distributed way, and with min-
imal information exchange between BSs. BSs do not change the power they
transmit on data channels, so that the data rates Rs(r) are constant. Only
the pilot power can change, and hence the zones As served by the BSs. We
define Ps the transmitted pilot power of BS s , and P = {Ps}1≤s≤NBS

- the
corresponding vector.

We show that the cell load can be estimated without bias, and propose a
power update mechanism. The convergence of the power update mechanism
to an optimal configuration is demonstrated by studying an associated ODE.

Time is divided into slots of size T > 0, and the k-th time slot is
[kT, (k + 1)T ). Let Ps[k] be the pilot power transmitted by BS s during the
k-th time slot, P [k] = {Ps[k]}1≤s≤NBS

- the corresponding vector. We write
{Tn, rn, σn}n∈Z

the instants of arrival of users, their location and their file
size respectively.

A load estimate for BS s is the amount of workload arriving in BS s
during [kT, (k + 1)T ), divided by T :

ρs[k] =
1
T

∑

n∈Z

σn

Rs(rn)
1[kT,(k+1)T )×As

(Tn, rn). (4.3)

The estimate (4.3) is unbiased and has finite variance, as stated by Theo-
rem 4.2.

Theorem 4.2.
E [ρs[k]] = ρs(P [k]), (4.4)

and if E [σ2] < +∞,

sup
k∈N

E
[

ρs[k]2
]

< +∞. (4.5)

4.2 Load balancing mechanism

4.2.1 Update equation

We propose the following load balancing mechanism:

Ps[k + 1] = Ps[k](1 + ǫk(ρ1[k]− ρs[k])). (4.6)
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Since load estimates are unbiased,

E [ρ1[k]− ρs[k]] = ρ1(P [k])− ρs(P [k]), (4.7)

and this suggests looking at the mean ODE:

Ṗs = Ps[ρ1(P )− ρs(P )]. (4.8)

We have chosen BS 1 as the reference BS without loss of generality i.e.
P1[k] = P1[0] , k ∈ N, since the reference BS can be changed by permutation
of indices. The rationale behind such a mechanism is that if BS s is less
loaded than BS 1 then Ps increases, and ρs(P ) should (intuitively) increase.
We prove that all solutions of the ODE converge to a set on which the loads
of all BSs is equal.

4.2.2 The mean ODE

We demonstrate several properties of the ODE (4.8). We use the model
described in section 7.1 for signal attenuation, without shadowing. The loca-
tion of BS s is rs ∈ A, and the signal attenuation between BS s and location
r ∈ A is L(rs, r). Users attach themselves to the BS with the strongest
received pilot signal:

As = {r ∈ A : s ∈ arg max
s′

L(rs′ , r)Ps′}. (4.9)

Assumption 4.1. Data rates are upper and lower bounded:

0 < Rmin ≤ Rs(r) ≤ Rmax < +∞ , ∀s, r. (4.10)

As a consequence:

E [σ]
Rmax

∫

As

λ(r)dr ≤ ρs ≤
E [σ]
Rmin

∫

As

λ(r)dr. (4.11)

Theorem 4.3. Under Assumptions 4.1, P → ρs(P ) is Lipschitz continuous
on:

P = [Pmin, +∞)NBS , (4.12)

with Pmin > 0.

This result is used to prove unicity of the solutions to the ODE.
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4.2.3 Convergence of the load balancing mechanism

An important property is that the maximal load decreases on the trajectories
of the ODE, as shown by theorem 4.4.

Theorem 4.4. Under Assumptions 4.1:

(i) Given an initial condition, the ODE (4.8) has a unique solution defined
on R+ . Furthermore it verifies

0 < inf
t∈R+

Ps(t) ≤ sup
t∈R+

Ps(t) < +∞. (4.13)

(ii) The set:
L = {P : max

s
ρs(P ) = min

s
ρs(P )}, (4.14)

is a Lyapunov stable attractor of the ODE (4.8).

This theorem has the following consequences: first since the solution is
unique given an initial condition, the asymptotic behaviour of the system
can be evaluated numerically by standard numerical analysis techniques.
Furthermore the transmit power of each BS can never be 0 and remains
bounded. Finally, the solution converges to a set on which the loads of all
BSs are equal, namely it performs load balancing. We write

ρ∞ = sup
P ∈L

max
s

ρs(P ). (4.15)

ρ∞ < 1 implies that the algorithm achieves stability regardless of the initial
condition. The algorithm increases the capacity of the network, and the
increase in capacity can be computed by evaluating ρ∞ numerically.

Finally we show the link between the asymptotic behaviour of the discrete
algorithm (4.6) and the previously studied ODE (4.8) through a stochastic
approximation result.

Theorem 4.5. Decreasing step sizes
Assume:

∑

k∈N

ǫk = +∞ ,
∑

k∈N

ǫ2
k < +∞, (4.16)

then
max

s
ρs[k]−min

s
ρs[k] a.s→

k→+∞
0, (4.17)

and :
lim sup

k→+∞
max

s
ρs[k] ≤ ρ∞. (4.18)
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Constant step sizes
When ǫk = ǫ > 0 a constant, then, for all µ > 0:

lim sup
k→+∞

P
[

|max
s

ρs[k]−min
s

ρs[k]| > µ
]

= o(ǫ), (4.19)

and:

lim sup
k→+∞

P
[

max
s

ρs[k] > µ + ρ∞

]

= o(ǫ). (4.20)

4.2.4 Extension to constant data rate traffic

This work was mainly motivated by elastic traffic, but most of the underlying
ideas are applicable to constant data rate traffic (streaming and voice traffic)
as well. Constant data rate traffic is modeled using the multi-rate Erlang
model described in subsection 2.1.2. The radio resources are divided into C
resource blocks, and users are allocated enough resource blocks to reach a
fixed target data rate Rst. A user located at r served by BS s requires

⌈

CRst

Rs(r)

⌉

resource blocks to reach the target data rate Rst. If
⌈

CRst

Rs(r)

⌉

> C then all users
arriving at r are blocked. We remove such points from the network area A.
Users stay in the network an exponentially distributed amount of time with
parameter µ. The streaming load for BS s denoted ρ(st)

s is calculated by:

ρ(st)
s =

1
Cµ

∫

As

⌈

CRst

Rs(r)

⌉

λ(r)dr. (4.21)

In particular if C is large so that the granularity of resources is small, the
streaming load can be approximated by:

ρ(st)
s ≈ Rst

µ

∫

As

λ(r)
Rs(r)

dr. (4.22)

which is the same expression as for elastic traffic, where the mean flow size
E [σ] has been replaced by Rst

µ
which is the average amount of data received

by a user during a session.
The loads can be estimated without bias in the same way as before:

ρ(st)
s [k] =

1
T

∑

n∈Z

Γn

C

⌈

CRst

Rs(rn)

⌉

1[kT,(k+1)T )×As
(Tn, rn), (4.23)

where Γn denotes the amount of time that the n-th user stays in the network
with E [Γn] = 1

µ
. Using the same power update equation 4.6, the loads can

be equalized.
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There is one difference with the elastic traffic case: for constant data
rate traffic, the main performance indicator is the blocking rate, and there
is no instability for loads higher than 1. There exists pathological cases
where the blocking rate is not a monotonously increasing function of the
load. Increasing the load can cause to block more users who need a large
amount of resources to reach the target data rate Rst, and reduce the blocking
rate for classes of users who need a small amount of resources.

In the elastic traffic case, the rationale behind equalizing the loads is to
ensure stability of all BSs whenever it is possible. For constant data rate
traffic, we cannot prove mathematically that equalizing the loads reduces
the network blocking rate. However, in practical scenarios, if some BSs are
much more congested than their neighbors, it is fair to say that equalizing
loads should improve the network performance by offloading the critically
loaded BSs.

4.3 Numerical experiments

We assess the performance gains of the proposed algorithm numerically. The
parameters of the network model are given in Table 4.1. We apply a small
random perturbation to the BSs locations, because in the case of a perfectly
hexagonal network, all cells have the same load, and there is no point in
trying to perform load balancing. The asymptotic behaviour of the proposed
algorithm (Theorem 4.5) is described by the ODE (4.8). To evaluate the
performance gains numerically, we choose an initial power configuration uni-
formly distributed in P, and find the corresponding limit set numerically.
We repeat the process several times to obtain several limit sets, and for each
of them we calculate the network capacity. Figure 4.1 shows the comple-
mentary cumulative distribution function (c.c.d.f) of the network capacity
improvement on the limit sets obtained by the procedure described above.
The capacity improvement is calculated with respect to a reference scenario
in which all BSs transmit the same power. We observe a performance gain of
36% in the worst case and 45% in the best case. The difference between the
best and worst case is not very large, suggesting that the proposed method
achieves a good performance without a global search. The gain in term of
network capacity is considerable. Figure 4.2 compares the behaviour of the
discrete time algorithm obtained by simulating user arrivals with the corre-
sponding trajectory of the ODE. The asymptotic behaviour of the discrete
time algorithm is indeed described by the ODE.
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Model parameters
Network layout Hexagonal
Antenna type Tri-sector
Number of BSs 16 sites × 3 sectors
Inter-site distance 500m
Network Area 1km× 1km
Access technology OFDMA
Link Model SISO, AWGN + Rayleigh fading
Number of resource blocks 12
Resource block size 180kHz
BS maximal transmit power 46dBm
Thermal noise −174dBm/Hz
Path loss model 128 + 37.6 log10(d) dB, d in km
File size 10Mbytes

Table 4.1: Model parameters

4.4 Proofs

4.4.1 Proof of Theorem 4.2

Proof. Applying the Campbell formula we have that:

E [ρs[k]] =
E [σ]

T

∫

[kT,(k+1)T )×As(P [k])

λ(r)
Rs(r)

dtdr = ρs(P [k]). (4.24)

The number of users entering the network in a finite time interval has
finite second moment, so that we obtain the bound:

E
[

ρs[k]2
]

≤ 1
R2

min

(∫

A

λ(r)dr
)2
(

E [σ]2 +
E [σ2]

T

)

, (4.25)

and
sup
k∈N

E
[

ρs[k]2
]

< +∞, (4.26)

concluding the demonstration.

4.4.2 Proof of Theorem 4.3

Proof. The 2 BSs case
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Figure 4.1: Cell size optimization: c.c.d.f of performance gains on limit sets
of the ODE

We first consider A = [−Xmax, Xmax]2, and two BSs. BS 1 is located at
(−d

2
, 0) , and BS 2 at (d

2
, 0). By solving the algebraic equation:

P1((x +
d

2
)2 + y2)− α

2 = P2((x−
d

2
)2 + y2)− α

2 , (4.27)

we have that:

− If P1 = P2, A1 = {(x, y)| −Xmax ≤ x ≤ 0,−Xmax ≤ y ≤ Xmax}

− If P1 < P2 , A1 is the intersection between A and a disk of radius

r(P1, P2) = d
P

− 1
α

1 P
− 1

α
2

|P − 2
α

1 − P
− 2

α
2 |

, (4.28)

centered at (−c(P1, P2), 0) with:

c(P1, P2) =
d

2
P

− 2
α

1 + P
− 2

α
2

|P − 2
α

1 − P
− 2

α
2 |

. (4.29)

− If P1 > P2 , A2 is the intersection between A and a disk of radius
r(P1, P2) centered at (c(P1, P2), 0).
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Figure 4.2: Cell size optimization: comparison between the discrete time
algorithm and the ODE

Assume that P1 < P2:

|A1(P1, P2)| =
∫ π

0
R(θ, P1, P2)2dθ, (4.30)

with:

R(θ, P1, P2)2 = min(r(P1, P2) sin(θ), Xmax)2

+ max(r(P1, P2) cos(θ), c(P1, P2)−Xmax)2. (4.31)

Since both (P1, P2) → r(P1, P2) and (P1, P2) → c(P1, P2) are bounded with
bounded derivatives in a neighborhood of (P1, P2), (P1, P2)→ |A1(P1, P2)| is
locally Lipschitz continuous at (P1, P2). By symmetry, the same is true for
P1 > P2.

Assume that P2 > P1 > 0 and |P2 − P1| ≤ ǫ, then there exists K4 > 0
such that:

||A1(P1, P2)| − |A1(P1, P1)|| ≤ K4
ǫ

P1
+ o(ǫ), (4.32)

hence Lipschitz continuity is valid on P.
Arbitrary number of BSs
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We consider the general case with an arbitrary number of BSs. We
consider NBS BSs, P (1) ∈ P , P (2) ∈ P, and without loss of generality
ρs(P (1)) ≥ ρs(P (2)). Let P (3) ∈ P, P (4) ∈ P with

P
(3)
s′ = min(P (1)

s′ , P
(2)
s′ ) , s′ 6= s (4.33)

P (3)
s = max(P (1)

s , P (2)
s ), (4.34)

and:

P
(4)
s′ = max(P (1)

s′ , P
(2)
s′ ) , (4.35)

P (4)
s = min(P (1)

s , P (2)
s ). (4.36)

We use the notation ‖P‖∞ = max
s
|Ps|. It is noted that ‖P (2) − P (1)‖∞ =

‖P (3) − P (4)‖∞. Since:

|ρs(P (1))− ρs(P (2))| ≤ |ρs(P (3))− ρs(P (4))| (4.37)

and:
As(P (4)) ⊂ As(P (3)), (4.38)

then:
|ρs(P (3))− ρs(P (4))| ≤ K2|As(P (3)) \ As(P (4))|. (4.39)

We write:
As,s′(P ) = {r|L(rs, r)Ps ≥ L(rs′, r)Ps′}, (4.40)

and
As(P ) = ∩s′ 6=sAs,s′(P ). (4.41)

Furthermore:

As(P (3)) \ As(P (4)) ⊂ ∪s′ 6=s(As,s′(P (3)) \ As,s′(P (4))). (4.42)

Hence we have that:

|ρs(P (1))− ρs(P (2))| ≤
∑

s′ 6=s

|As,s′(P (3)) \ As,s′(P (4))|, (4.43)

which proves the result, since there exists K3 so that

|As,s′(P (3)) \ As,s′(P (4))| ≤ K3‖P (3) − P (4)‖, (4.44)

by using the result obtained for two BSs.
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4.4.3 Lemma 4.1

The following lemma is a direct consequence of the enveloppe theorem.

Lemma 4.1. Let x : R→ Rn , absolutely continuous with almost everywhere
(a.e) derivative ẋ(t). Then t → min

s
xs(t) and t → max

s
xs(t) are absolutely

continuous, with derivatives:

ẋs(t)(t) , s(t) ∈ {arg min
s

xs(t)}, (4.45)

and:
ẋs(t)(t) , s(t) ∈ {arg max

s
xs(t)}. (4.46)

4.4.4 Proof of Theorem 4.4

Proof. (i) Since min
s

Ps(0) > 0, Theorem 4.3 states that the cell loads are
Lipschitz continuous in a neighbourhood of P (0). Hence P → (ρ1(P )−ρs(P ))
is Lipschitz continuous in a neighbourhood of P (0), and the Picard-Lindelöf
theorem ensures that there exists a unique local solution given an initial
condition in P.

Upper bound
Consider such a local solution defined on [0, δ), t ∈ [0, δ), and assume

Ps(t) = max
s

Ps(t) > Pmax, then:

ρ1(P (t)) ≤ ρ1(P1(0), 0, · · · , 0, Pmax, 0, · · · , 0), (4.47)

and
ρs(P (t)) ≥ ρs(Pmax, · · · , Pmax) = ρs(1, · · · , 1). (4.48)

Since:
ρ1(P1(0), 0, · · · , 0, Pmax, 0, · · · , 0) →

Pmax→+∞
0, (4.49)

and ρs(1, · · · , 1) > 0, there exists a value of Pmax such that if Ps(t) =
max

s
Ps(t) > Pmax then Ṗs(t) ≤ 0 (using Lemma 4.1).

Assume that there exists t1 such that max
s

Ps(t1) > Pmax, there also exists
t0 such that max

s
Ps(t0) = Pmax and max

s
Ps(t) > Pmax , t ∈ [t0, t1]. Applying

Lemma 4.1 we obtain Pmax < max
s

Ps(t1) ≤ Pmax which is impossible. Hence
supt∈[0,δ) Ps(t) < +∞.

Lower bound
We write Pmax = sup

t∈[0,δ)
max

s
Ps(t). Assume that Ps(t) = min

s
Ps(t) < Pmin,

then:
ρ1(P (t)) ≥ ρ1(P1(0), Pmax, · · · , Pmax), (4.50)
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and
ρs(P (t)) ≤ ρs(P1(0), Pmin, · · · , Pmin). (4.51)

Since:
ρs(P1(0), Pmin, · · · , Pmin) →

Pmin→+∞
0, (4.52)

there exists a value of Pmin such that if Ps(t) = min
s

Ps(t) < Pmin then

Ṗs(t) ≥ 0. Using Lemma 4.1 and the same argument as above, we obtain
that inft∈[0,δ) Ps(t) > 0.

Maximality
Since 0 < inft∈[0,δ) Ps(t) ≤ supt∈[0,δ) Ps(t) < +∞, and assuming that

δ < +∞ the considered local solution can be extended to [0, δ′) with δ < δ′.
This proves that the ODE has a unique solution defined on R

+ and that
0 < inft∈R+ Ps(t) ≤ supt∈R+ Ps(t) < +∞.

(ii) Since t→ P (t) is absolutely continuous, and P → ρs(P ) is Lipschitz
continuous, t → ρs(P (t)) is absolutely continuous and has a derivative a.e,
and we write Z the set on which the function is non-differentiable.

Let t0 /∈ Z, and s ∈ {arg max
s

ρs(P (t0))},

d

dt

Ps′(t)
Ps(t)

|t=t0 =
Ps′(t0)
Ps(t0)

[ρs(P (t0))− ρs′(P (t0))] ≥ 0, (4.53)

with equality if s′ ∈ {arg max
s

ρs(P (t0))}.
Using homogeneity of P → ρs(P ):

ρs(P (t0 + ǫ)) = ρs

(

P (t0 + ǫ)
Ps(t0 + ǫ)

)

. (4.54)

Using Lipschitz continuity of ρs:

ρs

(

P (t0 + ǫ)
Ps(t0 + ǫ)

)

= ρs

(

P (t0)
Ps(t0)

(1 + ǫ[ρs(P (t0))− ρ(P (t0))])

)

+ o(ǫ)

≤ ρs

(

P (t0)
Ps(t0)

)

+ o(ǫ) = ρs(P (t0)) + o(ǫ) (4.55)

Hence :

lim
ǫ→0

ρs(P (t0 + ǫ))− ρs(P (t0))
ǫ

≤ 0. (4.56)

It is noted that the limit exists because of differentiability at t0. Define
the Lyapunov function V (P ) = max

s
ρs(P ) − min

s
ρs(P ). By the reasoning
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above we have proven that t→ max
s

ρs(P (t)) is non-increasing and similarly
that t → min

s
ρs(P (t)) is non-decreasing. This proves that t → V (P (t)) is

non-increasing.
It remains to show that t → V (P (t)) is strictly decreasing when it is

not equal to 0. We consider two sub-cases depending on the number of BSs
whose load equals the maximal load max

s
ρs(P ).

|{arg max
s

ρs(t0)}| = 1

Consider s0 = {arg max
s

ρs(t0)} and t0 < t1. For t1 sufficiently close to

t0, we have that Ps0(t)

Ps(t)
is strictly decreasing on [t0, t1] for s 6= s0. Hence

t → max
s

ρs(P (t)) = ρs0(P (t)) is strictly decreasing on [t0, t1]. Since we
have already proven that t → min

s
ρs(P (t)) is non-decreasing, we have that

t→ V (P (t)) is strictly decreasing on [t0, t1].
|{arg max

s
ρs(t0)}| > 1

Now consider the situation |{arg max
s

ρs(t0)}| = n > 1. There are two pos-

sibilities: either there exists t1 > t0 such that {arg max
s

ρs(t)} = {arg max
s

ρs(t0)},
t ∈ [t0, t1] or |{arg max

s
ρs(t)}| < n for all t ∈ [t0, t1] with t1 in a sufficiently

small neighboorhood of t0.
Consider the first case. We must have that t → max

s
ρs(t) is strictly

decreasing on [t0, t1], since t → Ps0 (t)

Ps1 (t)
is strictly decreasing on [t0, t1] for

s0 ∈ {arg max
s

ρs(t0)} and s1 /∈ {arg max
s

ρs(t0)}. Since t → min
s

ρs(P (t)) is

non-decreasing, we have that t→ V (P (t)) is strictly decreasing on [t0, t1].
The second case is proven by recurrence on n.
We have proven that t→ V (P (t)) is strictly decreasing whenever V (P (t)) >

0 which concludes the demonstration.

4.4.5 Proof of theorem 4.5

Proof. Theorem 4.2 states that:

E [ρs[k]] = ρs(P [k]) , sup
k

E
[

ρs[k]2
]

< +∞. (4.57)

Also {ρs(P [k]) − E [ρs[k]]}k is a martingale difference noise sequence. We
know that L is an asymptotically stable attractor of the ODE (4.8). The up-
date equation for powers is a stochastic approximation scheme and applying
theorem 2.7 and theorem 2.8 proves the result.
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Chapter 5

Relay networks

In this chapter we address SON for traffic management in relay-enhanced
cellular networks. A Relay Station (RS) is a node which is connected to
the BS through a wireless link. Communication between the BS and a user
involves two hops: the BS transmits data to the RS via air interface, the RS
processes it and transmits it to the user, via air interface once again. The
benefit of adding RSs to a wireless network is that users are closer to the RS
than to the BS, and the power of the signal received by the users is stronger.
We use the term “station” to refer to a BS or a RS indifferently.

There is no wired link between the BS and the RS, so deploying a relay is
much less costly than deploying a BS. There is a price to pay though, since
the available spectrum for wireless communication must be shared between
the BS to RS links and the stations to users links. RSs create additional
inter-cell interference in the network, so that a user located at the frontier
between two RSs receives high interference and experiences low data rate.
There is a capacity trade-off between gains from increasing the strength of
the received signal, and the losses due to resource sharing between the BS to
RS links and the stations to users links and increased inter-cell interference.

Future wireless networks such as LTE-Advanced networks are expected to
feature RSs. RSs are part of the concept of HetNet. HetNets comprise a high
number of low power nodes deployed in high traffic areas to increase capacity,
namely pico-cells, femto-cells and RSs. Autonomous management of HetNets
is an important research topic because of the sharp increase of the number
of nodes. Some HetNet nodes such as femto-cells are deployed directly by
subscribers and must be configured without the help of a skilled network
engineer. The SON approach seems particularly adapted to HetNets.

As in chapter 4, we take into account flow-level dynamics where users
enter the network and leave dynamically. We are concerned with three topics:

− The capacity gains of relays at the flow level.

117
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− Algorithms to optimize the relays transmit power and the resource
allocation between BS to RS and RSs to users links based on traffic
measurements.

− Dynamic resource sharing between BS to RS and RSs to users links,
i.e taking into account the number of active users and their location in
the network.

We provide simple closed-form formulas for dimensioning and evaluating the
capacity gains at the flow level using a queuing analysis. An algorithm to
optimize the relay transmit powers and resource sharing simultaneously is
provided, and its convergence is proven using stochastic approximation the-
orems. The proposed algorithm is partly based on the load balancing algo-
rithm proposed in chapter 4. We extend the results of chapter 4 to more
general arrival processes than Poisson arrivals. Our results apply when there
is a long-range dependency between the arrivals, for instance for Markov-
modulated Poisson arrivals. Dynamic resource sharing is modeled as a MDP.
For a small number of RSs, the optimal controller is found using value it-
eration. The structure of this optimal controller is to be used as expert
knowledge. A set of parameterized policies (the expert knowledge) is intro-
duced. Finally, we use policy gradient reinforcement learning to tune the
policy parameter without knowledge about the traffic dynamics.

This chapter is based on our contributions [25], [27]. The proofs for all
the results can be found in section 5.5.

5.1 Dimensioning

5.1.1 System model

We consider a wireless network in downlink. Users arrive at random times
and locations, to receive a file of random size σ, with E [σ] < +∞. We
assume that there is no user mobility and that users leave the network upon
service completion. We denote by A ⊂ R2 the network area which we assume
to be bounded and convex. A contains a BS (alternatively denoted as macro-
cell) and several RSs. We denote by NR the number of RSs, and we use the
convention that station 0 is the BS and station s , 1 ≤ s ≤ NR is the s-th
RS.

We use the terminology of point processes introduced in section 2.1. We
denote by {Tk, rk, σk}k∈Z

the users’ instants of arrival, their location and
their file size. For B ⊂ R×A a Borel set, we define the number of users who
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arrive in B:
N(B) =

∑

k∈Z

1B(Tk, rk), (5.1)

and the first-order measure of the arrival process m:

m(B) = E [N(B)] . (5.2)

We define the filtration Ft as the σ-algebra generated by:

(N(B) : B ⊂ (−∞, t)× A Borel set) , (5.3)

which represents the available information when observing the arrival process
up to time t. To ease the notation, we define ξt ∈ Ξ the effective memory of
the arrival process, with Ξ a compact metric space, so that E [.|Ft] = E [.|ξt].
Informally, ξt contains all the Ft-measurable random variables which are
needed to compute the distribution of the number of arrivals after t. Those
variables represent the information available at time t which is relevant to
the law of arrivals after t.

Finally, we define the conditional first-order measure of the arrival process
at time t by:

m(B|ξt) = E [N(B)|ξt] . (5.4)

We use three sets of assumptions for the arrival process:

Assumption 5.1 (stationary ergodic traffic). The arrival process satisfies:

− Time-stationary: for t ∈ R,

{Tk − t, rk, σk}k∈Z

d= {Tk, rk, σk}k∈Z

− Independence between arrivals and file sizes {Tk, rk}k∈Z
⊥⊥ {σk}k∈Z

− Ergodicity: the transformation
{Tk, rk, σk}k∈Z

7→ {Tk − t, rk, σk}k∈Z
is ergodic

− Continuity with respect to Lebesgue measure in space: m(dr × dt) =
λ(r)dr × dt.

− Bounded intensity: sup
r∈A

λ(r) < +∞

Assumption 5.2 (stationary ergodic light traffic). The arrival process sat-
isfies assumptions 5.1 and:

− Finite second-moment measure: for T ≥ 0, E [N([0, T ]× A)2] < +∞
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− Conditional continuity with respect to Lebesgue measure in space: ∃λ,
m(dr × [0, T )|ξ0) = λ(r, [0, T ), ξ0)dr.

− Bounded conditional intensity:
sup
ξ0∈Ξ

sup
r∈A

λ(r, [0, T ), ξ0) < +∞

Assumption 5.3 (Poisson light traffic). The arrival process satisfies as-
sumptions 5.2 and is a Poisson process:

− N(B) is a Poisson random variable with mean m(B)

− (N(B1), . . . , N(BN )) are independent if ∩N
n=1Bn = ∅.

It is noted that assumptions 5.1 are the most general, allowing for cor-
related arrivals in both time and space, while 5.3 are the most restrictive.
A special case of assumptions 5.2 is Markov-modulated Poisson arrivals. For
Markov modulated Poisson arrivals, t→ ξt is a Markov process, and its evo-
lution does not depend on the arrival process. Conditional to {ξt}t∈R

, the
arrival process is a Poisson process. It is also noted that we do not assume
that σ has finite variance so that our results hold for heavy-tailed traffic.

As mentioned earlier, RSs have no direct link to the core network, and are
connected to the BS by a wireless link. This wireless link uses the same radio
resources as the station to users’ links and we are interested in finding an
appropriate resource sharing method. This mechanism is often called in-band
relaying. Depending on the multi-access radio technology, the radio resources
can refer to codes in CDMA, to time slots in Time Division Multiple Access
(TDMA) or to time-frequency blocks in OFDMA. We ignore the granularity
of resources and we denote by x ∈ [0, 1] the proportion of resources allocated
to the link between the BS and RSs. We further assume that RR scheduling
applies in all links: the link between the BS and RSs is shared in a PS way
among the RSs, and that each link between a station and the users it serves
is shared in a PS way among those users.

5.1.2 System capacity

Let As ⊂ A denote the area covered by station s. For a given x ∈ [0, 1]
we calculate the capacity of the system, and the optimal resource sharing
strategy x∗ which ensures stability whenever it is possible. We assume until
the end of this section that the traffic is uniform m(dr × dt) = λ0dr × dt.
Namely, we denote by C the capacity of the system defined as the maximal
value of λ0E [σ] that keeps the system stable i.e the number of users in the
system does not grow to infinity. We write Rrel,s , 1 ≤ s ≤ NR the data rate
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of the link between BS and RS s when it is the only active link, and Rs(r)
, r ∈ As the data rate between station s and a user located at r when he
is the only user served by station s. The effect of inter-cell interference is
incorporated in Rrel,s and Rs(r), hence the results given here hold regardless
of the amount of inter-cell interference.

Theorem 5.1. The capacity C of the system is:

C(x) = min
(

Crel(x), min
0≤s≤NR

Cs(x)
)

, (5.5)

with:

Crel(x) = x





NR
∑

s=1

|As|
Rrel,s





−1

, (5.6)

Cs(x) = (1− x)

(

∫

As

1
Rs(r)

dr

)−1

. (5.7)

Furthermore, there exists a unique x∗ ∈ [0, 1] which maximizes the capacity,

x∗ =

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr
)−1

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr
)−1

+
(

∑NR
s=1

|As|
Rrel,s

)−1
, (5.8)

with C(x∗) the maximal capacity.

It is noted that this result applies regardless of the underlying packet
dynamics. More precisely, consider two scenarios:

1. Small files: When a user served by a RS arrives in the network, the file
he wants to receive enters the BS to RSs link and once the whole file
has gone through that link, it enters the corresponding RS to user link
and is transmitted. This model is reasonable for small files.

2. Larger files: In a more realistic setting, when a user served by a RS ar-
rives in the network, the file he wants to receive arrives as small packets
which enter the BS to RSs link, possibly with delays between packets.
Once a packet has gone through the BS to RSs link it immediately
enters the RS to user link. Here the file can be “split” between the two
successive links.

For both traffic models the demonstration remains the same, and the system
capacity does not change.
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5.1.3 Relay gain

We introduce the concept of RS placement gain, and give a method to eval-
uate the resulting capacity improvement. We use the propagation model
described in section 7.1. We assume that the signal attenuation per distance
unit is smaller for the useful signal between the BS and RSs than for in-
terfering signals. This can be achieved by placing RSs high enough so that
the propagation between the BS and RSs is close to the line-of-sight case,
while taking advantage of buildings to increase the attenuation of interfering
signals. The path loss parameters are (A, ηr) for the useful signal between
the BS and RSs, and (A, η) for all other signals with 2 ≤ ηr ≤ η . The case
ηr = 2 corresponds to line-of-sight propagation between BS and RSs. We
call η− ηr the relay gain, and ηr = 2 gives an upper bound on the achievable
capacity by intelligent relay placement.

5.1.4 Numerical experiments

We evaluate the influence of the system parameters on the performance.
The model parameters are given in Table 5.1, and Figure 5.1 represents the
network layout. Interference from neighbouring cells is taken into account.
Data rates Rs(r) are calculated for single-tap Rayleigh fading as explained
in chapter 3. We choose a large cell radius since [52] had shown that relays
are only beneficial in such a setting.

Model parameters
Cell layout Hexagonal
Antenna type Omni-directional
Cell Radius 2km
Access technology OFDMA
Fast-fading model Rayleigh
NRB 10
Resource block size 180kHz
BS transmit power 46dBm
RS maximum transmit power 30dBm
Thermal noise −174dBm/Hz
Path loss model 128 + 37.6 log10(d) dB, d in km
File size 10Mbytes

Table 5.1: Model parameters
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Figure 5.1: Relay placement

Figure 5.2 and 5.3 show the capacity of the system and the optimal relay
transmit power respectively as the number of relays grows, with and with-
out relay gain. The optimal relay transmit powers are determined using an
exhaustive search for a discrete set of possible values ( {−10, . . . , 60} dBm
), all relays having the same transmit power. The case without relay gain
is denoted “bad planning” (with ηr = η = 3.5) and with relay gain “good
planning” (with ηr = 2 and η = 3.5). It is noted that the value of the opti-
mal relay transmit power in the “bad planning” case is 0mW for all number
of relays (below the x-axis). It demonstrates that the impact of relay gain
is fundamental since without relay gain it is actually detrimental to deploy
relays. With relay gain however, the system capacity increases sharply.

Figure 5.4 shows the impact of the relay gain on the system capacity for
a fixed number of relays (15 in this case), and we can see that the capacity
increases almost linearly in the relay gain. This can be explained by the fact
that log2(1 + S‖r‖η−ηr ) is close to log2(S) + (η−ηr) log2(‖r‖) when S‖r‖η−ηr

is large. It shows that if one is able to evaluate the relay gain prior to
deployment (by measuring the value of the path loss exponent in candidate
sites for relay placement), one can actually determine if relay deployment is
beneficial and the expected benefit. Furthermore the point where the two
curves intersect represents the minimal relay gain needed for any benefit from
relay deployment to appear.
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Figure 5.2: System capacity as a function of the number of relays, for different
planning strategies

5.2 Self-Optimization

We have given a procedure for network dimensioning and we show that the
network can adapt itself to traffic variations based solely on measurements
and perform automatic load balancing. Two critical parameters are tuned:
the pilot powers of the RSs which control the zones served by the RSs and
the resources allocated to the backhaul links. Both parameters are updated
simultaneously, and we show that the proposed mechanism ensures their co-
ordination. We extend the load balancing mechanism of chapter 4 to relay
enhanced networks, and we tune the transmitted pilot powers and the re-
source allocation to the backhaul to converge to an optimal configuration.
Unlike the previous section, we consider a slightly more general model: the
resources allocated to the backhaul links are not shared in a PS manner any
more.

Instead of sharing
∑NR

s=1 xs resources among the backhaul links in a PS
manner, for each s, a quantity xs is allocated to the link between the BS
and RS s, which does not require a scheduler to share the resources among
the different backhaul links. If PS applies for the backhaul links then, the
quantity allocated to the backhaul is simply

∑NR
s=1 xs.
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Figure 5.3: Optimal relay transmit power as a function of the number of
relays, for different planning strategies

5.2.1 Traffic estimation

In appendix 5.5.2, we show that quantities of interest can be estimated by
traffic measurements. We do not assume the traffic to be uniform. We write
ρs the load of station s and ρrel,s the load of the backhaul between the BS
and RS s, which can be expressed as:

ρs =
E [σ]

1−∑NR

s′=1 xs′

∫

As

λ(r)
Rs(r)

dr , ρrel,s =
E [σ]

∫

As
λ(r)dr

xsRrel,s

. (5.9)

Define ρs and ρrel,s by :

ρs =
∫

As

λ(r)
Rs(r)

dr , ρrel,s =
∫

As
λ(r)dr

Rrel,s

. (5.10)

then the loads can be expressed in the reduced form:

ρs =
E [σ] ρs

1−∑NR

s′=1 xs′

, ρrel,s =
E [σ] ρrel,s

xs

. (5.11)

The condition for load balancing is ρrel,s = ρs = ρ0, which reduces to:

ρrel,s

xs

=
ρs

1−∑NR

s′=1 xs′

=
ρ0

1−∑NR

s′=1 xs′

. (5.12)
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Figure 5.4: Impact of the relay gain on the system capacity

The mean flow size E [σ] has disappeared, so that load balancing can be
achieved without estimating it.

Time is slotted, with T the time slot size. The n-th time slot is [nT, (n +
1)T ). We write ξ[n] = ξT n. Loads can be estimated using theorem 5.4 given
in section 5.5. The loads are estimated by:

ρs[n] =
1
T

∑

k∈Z

1
Rs(rk)

1As
(rk)1[nT,(n+1)T )(Tk), (5.13)

ρrel,s[n] =
1
T

∑

k∈Z

1
Rrel,s

1As
(rk)1[nT,(n+1)T )(Tk) (5.14)

Assumption 5.4. Data rates are lower bounded: inf
r∈A

min
s

Rs(r) = Rmin > 0

We recall that P 7→ |As(P )| =
∫

As(P ) dr is Lipschitz continuous as a
particular case of theorem 4.3. Hence P 7→ ρrel,s(P ) and P 7→ ρrel,s(P ) are
both Lipschitz continuous.

Property 5.1. P → |As(P )| is Lipschitz continuous on
P = [Pmin, Pmax]NR+1 with 0 < Pmin ≤ Pmax < +∞.

Equation (5.4) is valid as long as there is an admission control rule on
the minimal data rate for a user to enter the system. Theorem 5.4 states
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that the load estimates are unbiased:

E [ρs[n]] = ρs , E [ρrel,s[n]] = ρrel,s. (5.15)

5.2.2 Traffic balancing for the backhaul

First assume that the RSs transmit powers are fixed, so that the zones they
serve do not change. We want to balance the traffic based on measurements,
starting from an arbitrary allocation. If As has Lebesgue measure 0 we
can simply ignore RS s, hence we assume, without loss of generality, that
min

s
ρs > 0 and min

s
ρrel,s > 0.

Proposition 5.1. (i) The unique solution (5.12) is x∗(ρ):

x∗
s(ρ) =

ρrel,s

ρs

1 +
∑NR

s′=1

ρrel,s′

ρs′

(5.16)

(ii) We have that 0 <
∑NR

s′=1 xs′(ρ) < 1

(iii) ρ→ x∗(ρ) is locally Lipschitz continuous

Proof. (i) is proven by noticing that for any solution we must have that

s→ xsρs

ρrel,s

= 1−
NR
∑

s′=1

xs′ (5.17)

is constant. (ii) is straightforward since 0 <
ρrel,s

ρs
< +∞ and equation (5.16).

(iii) Is true since we have assumed ρs > 0.

Write xs[n] the proportion of resources allocated to the link between the
BS and RS s during the n-th time slot, and ǫn > 0 a step size. We consider
two types of steps sizes:

− (constant step sizes) ǫn = ǫ > 0

− (decreasing step sizes) ǫn = 1
nγ with γ0 < γ ≤ 1.

We define H the admissible set which is convex:

H = {x : xs ≥ 0 , 0 ≤
NR
∑

s=1

xs ≤ 1}. (5.18)
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We write [.]+H the projection on H . We consider the following iterative scheme
for load balancing:

xs[n + 1] = [xs[n] + ǫngs(ρ[n], x[n])]+H , (5.19)

gs(ρ, x) = ρrel,s(1−
NR
∑

s′=1

xs′)− ρsxs. (5.20)

The convergence to the unique optimal point is given by the following theo-
rem. The proof is based on stochastic approximation: we associate an ODE
to the iterative scheme and study its asymptotic behaviour. We then prove
that the iterates converge to Lyapunov stable attractors of the ODE.

Theorem 5.2. With assumptions 5.2 and 5.5, the sequence {x[n]}n con-
verges to x∗(ρ). The convergence occurs a.s for decreasing step sizes, and in
distribution for constant step sizes with ǫ→ 0+.

5.2.3 Coordination between backhaul and cell sizes

We assume that both the resource allocation to the backhaul, and the zones
served by the relays are adapted simultaneously, and we propose a coordi-
nation mechanism. The idea is to make the two mechanisms operate on a
“different time scale”, namely, the backhaul adaptation is sufficiently fast
compared to the cell sizes so that it appears as quasi-static. Relevant two-
time scales stochastic approximation results are used to prove convergence.

We assume that users attach themselves to the station with the strongest
received pilot power. Let Ps denote the power of the pilot signal transmitted
by station s and L(rs, r) the signal attenuation between station s and location
r ∈ A, the zones covered by stations can be written:

As(P ) = {r : s ∈ arg max
s′

Ps′L(rs′ , r)}. (5.21)

We write Ps[n] the power of the pilot signal transmitted by station s dur-
ing the n-th time slot. Let δn > 0 denote another step size sequence. As
previously, we distinguish two cases:

− (constant step sizes) ǫn = ǫ > 0 , δn = δ(ǫ) > 0 , with δ(ǫ)
ǫ
→

ǫ→0+
0

− (decreasing step sizes) ǫn = 1
nγ1

, δn = 1
nγ2

, with γ0 < γ1 < γ2 ≤ 1
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We consider the constraint set for the pilot powers P = [Pmin, Pmax]NR+1

with 0 < Pmin ≤ Pmax < +∞. The update equations are:

xs[n + 1] = [xs[n] + ǫngs(ρ[n], x[n])]+H (5.22)

Ps[n + 1] = [Ps[n] + δnhs(ρ[n], P [n])]+P , (5.23)

hs(ρ, P ) = Ps(ρ0(P )− ρs(P )). (5.24)

The convergence to a network configuration where the loads of all links are
equal is given by the next result.

Theorem 5.3. With assumptions 5.2 and 5.5, the sequence {(x[n], P [n])}n

converges to a set on which the loads of all links are equal, for Pmin sufficiently
small and Pmax sufficiently large. As in the previous theorem, the convergence
occurs a.s for decreasing step sizes, and in distribution for constant step sizes
with ǫ→ 0+.

5.2.4 Numerical experiments

We show some numerical experiments to assess the efficiency of the proposed
method. We have proven mathematically that, for a given stationary traffic,
the proposed algorithms converge to the optimal configuration. However, in
practical situations, the traffic changes over the course of a day, with traffic
peaks and periods during which the served traffic is low, for example during
the night.

Our numerical experiments show that when the traffic is not stationary,
the algorithm is able to adapt itself and successfully track the changing traffic
patterns. One BS and 4 RSs are considered. To demonstrate the tracking
properties, we adopt the following traffic configuration: a uniform traffic of
50 Mbps which does not change during time, and a hot-spot i.e a limited zone
with high traffic, located next to RS 1. The hot-spot traffic varies between
0 Mbps and 30 Mbps, and the time interval between the maximal traffic
and minimal traffic is 2 hours. We show that the algorithm adapts both cell
sizes and backhaul resources allocation in order to handle the variation in the
traffic pattern. We compare the proposed algorithm with a reference scenario
in which the network parameters are static. The network parameters are the
optimal static parameters for the period in which the hot-spot traffic is 10
Mbps, the second hour with the highest load. The motivation behind such
a model is a scenario in which a network engineer has chosen the optimal
network parameters for a uniform traffic, and an unexpected traffic pattern
appears for a few hours. Such traffic variations are too fast for a human
operator to modify the network parameters accordingly. This situation shows
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what kind of gains can be expected from network equipments that can adapt
themselves automatically to hourly traffic patterns.

Figure 5.5 illustrates the chosen network setup. Figure 5.6 shows the
total served traffic by the network, which is the sum of the uniform traffic (50
Mbps) and the hot-spot traffic (between 0 and 30 Mbps). Figure 5.7 shows
the evolution of the pilot power of two relay stations scaled to their total
transmitted power as a function of time, when the proposed SON algorithm
is used. At low traffic periods, RS 1 transmits at a high power and covers
a large area. At high traffic periods RS 1 transmits at low power in order
to serve a smaller area and avoid being overloaded since it absorbs most of
the hot-spot traffic. Figure 5.8 and 5.9 compare the loads of links between
the proposed SON algorithm and the reference scenario. In the reference
scenario, the loads of the BS and of RS 1 are unbalanced, and during the
high traffic periods RS 1 absorbs too much traffic, its load being close to
100%. This is highly problematic: without admission control, the average file
transfer time becomes infinite when the load goes to 100%. With admission
control, a load close to 100% results in unacceptably high blocking rate. With
the proposed algorithm, the loads of all links are very close to each other,
and are lower than in the reference scenario. At high traffic periods, the
worst load is 70% which is a large improvement with respect to the reference
scenario. This shows that the proposed algorithm successfully balances the
loads and reduces congestion by adapting to the changing traffic pattern.

5.3 Dynamic resource allocation

In the previous sections, our approach was to adapt the network to the traffic
configuration, defined in terms of arrival rates. The aim was to find the best
parameters for a given traffic. We turn to a case in which we act on a faster
time scale, and instead of adapting to the arrival rates, we adapt to the
current number and locations of active users. It is indeed a faster time scale
since the arrival rates change on the time scale of minutes to hours, whereas
the configuration of active users changes on a time scale of seconds. The BS
observes the current state of the network and decides whether to activate the
BS to RSs links or the stations to users’ links.

5.3.1 Infinite buffer case: stabilizing policy

We partition each As into N regions As,i , 1 ≤ i ≤ N , each associated with
a different radio condition. We call i-th traffic class in station s the users
who arrive in As,i. The state of the system can then be described by a vector
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Figure 5.5: Hot-spot traffic model

S ∈ N(2NR+1)N :

S = ((Ss,i)0≤s≤NR,1≤i≤N , (Srel,s,i)1≤s≤NR,1≤i≤N). (5.25)

In the small files framework we count the number of users present in the
links, otherwise we count the number of packets. Hence Ss,i is the number
of users (packets respectively) of class i served by the station to user link in
station s , and Srel,s,i , s ≥ 1 - the number of users (packets respectively) of
class i served by the BS to RS s link. We write Rs,i the data rate of a user
of class i served by station s.

We first assume infinite buffer lengths and we want to find the policy that
keeps the system stable whenever that is possible. The problem is in fact a
particular case of the constrained queuing systems considered by [57]. It has
been proven that such a policy exists and that it is a max-weight policy. We
define the weights:

Ds = max
1≤i≤N

(Ss,iRs,i) , 0 ≤ s ≤ NR (5.26)

Ds,rel = max
1≤i≤N

((Srel,s,i − Ss,i)Rrel,s) , 1 ≤ s ≤ NR (5.27)

The max-weight policy is then:

− If
∑

1≤s≤NR
Ds,rel ≥

∑

0≤s≤NR
Ds : activate the BS to RS s∗ link with

s∗ = arg max
1≤s≤RS

Ds,rel,
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Figure 5.6: Total served traffic as a function of time

− Else: activate the stations to users’ links, and in each station s serve
the class of users i∗

s = arg max
i

ns,iRs,i

5.3.2 Finite buffer case: MDP formulation

We assume that the system state S is restrained to S ⊂ N(2NR+1)N with S
finite due to admission control mechanisms. We formulate the problem as a
CTMDP and optimize QoS metrics such as blocking rate or file transfer time.
We formulate the problem in the small files framework since we want to solve
the MDP iteratively, in order to keep the state space relatively small. The
learning approach of the next section however can handle large state spaces
as demonstrated later.

State and action spaces

We assume that each link has a maximal number of simultaneous active
users.

S =
{

S : Srel,s,i ≤ Srel,s,i , 1 ≤ s ≤ NR , 1 ≤ i ≤ N

and Ss,i ≤ Ss,i , 0 ≤ s ≤ NR , 1 ≤ i ≤ N
}

We define A = {0, 1} the action space, with the convention:
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Figure 5.7: SON algorithm: scaled relay pilot power as a function of time

− a = 0 : activate BS to RSs links and share them in a PS manner

− a = 1 : activate stations to users’ links and share them in a PS manner

Transition probabilities

Assuming that the file size σ is exponentially distributed, the system is a
CTMDP. Transitions from S to S′ given action a have the following intensi-
ties:

− Arrival of a user from class i in the BS: 1S(s′)
∫

A0,i
λ(r)dr

− Arrival of a user from class i in the BS to RS s link: 1S(s′)
∫

As,i
λ(r)dr

− Departure of a user from class i in station s: 1{1}(a)1S(s′) Rs,iSs,i

E[σ]
∑N

i=1
Ss,i

− Movement of a user of class i from BS to RS s link to RS s to users’
link: 1{0}(a)1S(s′) Srel,s,iRrel,s

E[σ]
∑N

i=1

∑NR
s=1

Srel,s,i

Average reward

We call policy a mapping S → D(A), with D(A) the set of probability distri-
butions on A. We write (S(t), a(t), r(t))t∈R+ a sample path of the CTMDP
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Figure 5.8: Reference scenario: loads as a function of time

with S(t) the state, a(t) the action, and r(t) the reward at time t respectively.
We are interested in the average reward criterion of a policy P :

JS0(P ) = lim
T →+∞

1
T

EP,S0

[

∫ T

0
r(t)

]

(5.28)

with EP,S0 the expectation with respect to the probability generated by P ,
starting at S0, which does not depend on S0 if the system is ergodic under
policy P .

Performance criteria

We consider two performance criteria: mean file transfer time and blocking
rate(considering admission control). For each performance criterion we can
define a corresponding instantaneous reward for each state-action pair, and
finding the optimal policy for the resulting MDP yields the best policy with
respect to the considered performance criterion.

To optimize the mean file transfer time, we define the reward in state S
as the number of users divided by the arrival rate

∑N
i=1(S0,i +

∑NR
s=1(Ss,i + Srel,s,i))

∫

A
λ(r)dr

, (5.29)
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Figure 5.9: SON algorithm: loads as a function of time

and for any policy P that makes the system ergodic, JS0(P ) is the mean file
transfer time in the system using Little’s law ([41]).

We define the blocking rate as the ratio between the mean number of
blocked users and the mean number of users accessing the system, once
again assuming ergodicity. Given action a, let β(S, a) the sum of transi-
tion intensities out of state S and b(S, a) the sum of the intensities of arrival
or movements which would be blocked, then the reward is defined as b(S,a)

β(S,a)
.

Optimal control and parametrization

Given the previous description, we associate a DTMDP by uniformization
as described in 2.4.4. We derive the optimal policy using value iteration as
described in 2.4.1. It is noted that the complexity of finding the optimal
policy is exponential in the number of relays, limiting the approach to small
problems. In order to preserve scalability, we introduce a well-chosen family
of policies. For commodity of notation we use the following indexing of S:

(S1, · · · , Sk, · · · , S(2NR+1)N ) = ((Ss,i)0≤s≤NR,1≤i≤N , (Srel,s,i)1≤s≤NR,1≤i≤N).
(5.30)
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For θ ∈ R(2NR+1)N we write:

〈S , θ〉 =
(2NR+1)N
∑

k=1

θkSk. (5.31)

To θ we associate the deterministic weighted policy Pd,θ:

Pd,θ(S, 1) =

{

1 , 〈S , θ〉 ≥ 0

0 , 〈S , θ〉 < 0
(5.32)

Pd,θ(S, 0) = 1− Pd,θ(S, 1) (5.33)

It is noted that a deterministic weighted policy is essentially an hyper-
plane separating the state space in two regions, each half-space corresponding
to an action of A.

It is also noted that the max-weight policy is a deterministic weighted
policy. We then compare the performance of three policies: the optimal
policy, the max-weight policy and the optimal deterministic weighted policy.
The optimal deterministic weighted policy is well defined since the set of
deterministic policies is finite. Figure 5.10 and 5.11 show the file transfer
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Figure 5.10: File transfer time as a function of the traffic for different control
strategies

time and the blocking rate for the three policies, for one relay, one traffic class
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Figure 5.11: Block call rate as a function of the traffic for different control
strategies

and a maximum of 10 users for all links. We can see that the max-weight
policy is very close to the optimal policy when we are concerned with the
block call rate, which is natural since it attempts to ensure stability. In the
file transfer time case however, the optimal deterministic weighted policy is
noticeably closer to the optimal policy than the max-weight. The fact that
max-weight scheduling possibly incurs long delays has been reported in the
literature. Hence based on those two results we can conclude that the set of
deterministic weighted policies is rich enough to restrain the search to this
set, since with a high number of relays and/or traffic classes, finding the
optimal policy becomes prohibitively expensive.

5.4 Learning

We have demonstrated that the set of weighted policies is rich enough to
represent a good trade-off between performance and search complexity. We
move on to a model-free approach, and we assume no knowledge of the transi-
tion intensities and rewards. We are interested in learning the best weighted
policy, simply by observing sample paths of the Partially Observable Markov
Decision Process (POMDP) (S(t), a(t), r(t))t∈N. The model can be partially
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observed for various reasons. For example if user arrivals are correlated in
time, the evolution of the system after t depends on the user arrivals before
t, and this information is not present in S(t). The method presented here
is valid without assuming Poisson arrivals or exponentially distributed file
sizes.

5.4.1 Policy gradient approach

We use the policy gradient approach described in 2.4.3. It is noted that such
algorithms work with stochastic policies, for the cost to be differentiable with
respect to the policy parameter. We introduce stochastic weighted policy
Ps,θ:

Ps,θ(S, 0) = 1− f(〈S , θ〉), (5.34)

Ps,θ(S, 1) = f(〈S , θ〉), (5.35)

with f(x) = 1
1+e−x . We are interested in finding the θ which minimizes the

average cost JS0(Ps,θ). The link with the policies introduced in the previous
section is that any deterministic weighted policy Pd,θ can be approximated
arbitrarily well by a stochastic weighted policy Ps,K θ

‖θ‖
, with K ∈ R+ arbi-

trarily large.

5.4.2 Convergence to a local optimum

We show how to converge to a local optimum of the average cost. We differ-
entiate the action probabilities:

∂ log(Ps,θ(S, 0))
∂θk

= −f(〈S , θ〉)Sk = −Ps,θ(S, 1)Sk (5.36)

∂ log(Ps,θ(S, 1))
∂θk

= (1− f(〈S , θ〉))Sk = Ps,θ(S, 0)Sk (5.37)

All stochastic policies guarantee ergodicity of the system if we are considering
a MDP, as stated by the next result.

Proposition 5.2. If we are considering a MDP model (not a POMDP), for
every θ, the Markov chain {S(t)} generated by policy Ps,θ is ergodic, implying
that JS0(Ps,θ) is well-defined and does not depend on S0.

Proof. Consider an arbitrary state S and the state 0. There exists a path
with strictly positive probability between 0 and S since arrivals do not depend
on the actions. There exists a path of strictly positive probability between
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S and 0 as well since in every state in which at least one user (packet) is
present in the system, there is a transition corresponding to the departure of
a user (or a packet) with strictly positive probability. It is the case because
for any policy and any state there is a strictly positive probability for each
action to be selected. This proves that the chain is irreducible.

Furthermore, the chain is aperiodic since there exists a transition from
state 0 to itself. This transition exists because we have applied uniformiza-
tion.

Since the state space is finite, and the chain is both irreducible and ape-
riodic, this proves ergodicity of the chain for any policy.

Using the fact that 0 < Ps,θ(S, a) < 1, a ∈ {0, 1}, S ∈ S we have that:

− max
a∈{0,1}

max
S∈S

∣

∣

∣

∂ log(Ps,θ(S,0))

∂θk

∣

∣

∣ < +∞, 1 ≤ k ≤ (2NR + 1)N

− max
a∈{0,1}

max
S∈S

r(S, a) < +∞ , with r(S, a) the reward given state S and

action a

Given β ∈ (0, 1), and a sample path of the POMDP (S(t), a(t), r(t))t∈N

, we define the sequence of gradient estimates and the eligibility traces
(∆(t), z(t))t∈N by the following recursive equation:

z(0) = 0 , ∆(0) = 0 (5.38)

z(t + 1) = βz(t) +∇θ log(Ps,θ(S(t), a(t))) (5.39)

∆(t + 1) = ∆(t) +
1

t + 1
[r(t)z(t)−∆(t)] (5.40)

We denote by ∆(t)(θ) the value of the gradient estimate ∆(t) when parameter
θ is used to highlight the dependence on θ. Theorem 2.11 states that for β
large enough:

lim inf
t→+∞

〈E [∆(t)(θ)] , ∇θJ(θ)〉 > 0. (5.41)

Namely, −∆(t) is a (noisy) descent direction for large t. We can use ∆(t)(θ)
for optimizing J(θ) using stochastic approximation, see section 2.3. We con-
sider Θ ⊂ R(2NR+1)N a compact and convex set, [.]+Θ the projection on Θ,
(ǫn)n∈N a sequence of positive step sizes satisfying the usual stochastic ap-
proximation conditions. We define θn by:

θ0 ∈ Θ (5.42)

θn+1 = [θn − ǫn∆(t)(θn)]+Θ (5.43)

then θn converges to a local minimum of J in Θ. The convergence point is
not necessarily unique if J or Θ are not convex.
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Furthermore, since −∆(t)(θ) is a descent direction with high probabil-
ity for large t, we have that the performance of the system improves almost
monotonically, which is a very interesting property for system implementa-
tion. This is in sharp contrast with the traditional learning phase of learning
algorithms such as Q-learning when the average reward changes rapidly. The
learning method converges to a locally optimum policy. It is noted that con-
vergence of the controller parameter θ implies convergence of policies.

5.4.3 Implementation issues: traffic and scalability

The learning method is valid regardless of the statistical assumptions on
traffic. Namely the validity of the policy gradient approach was shown by
[10] even in the partially observable case.

It is noted that the algorithm is fully scalable (linear complexity) when
the number of relays increase since all the components of the descent direction
∆(t)(θn) are estimated from the same sample path of the POMDP, incurring
no additional costs when NR or N increases. This is fundamental since some
deployment scenarios include 30 RSs per BS.

5.4.4 Numerical experiments

We evaluate the performance of the learning algorithm in the same setting
as Section 5.3. Figures 5.12 and 5.13 represent the evolution of the mean file
transfer time and the controller parameters (θ1, θ2, θ3) respectively during
the learning period. One update of θ corresponds to 103 iterations of the
underlying POMDP. As stated above, the mean file transfer time decreases
in an almost monotonic fashion. The small variations are a numerical artefact
due to the fact that the average reward is calculated on a finite number of
iterations of the POMDP.

We run the learning process successively a 100 times from an initial con-
dition randomly chosen in [−5, 5](2NR+1)N , and we calculate the file transfer
time at the value of θ returned by the learning procedure. We calculate the
global optimum by a global search (particle swarm optimization was used
here). We then plot the c.d.f of the performance gap between the learning
process and the global optimum on figure 5.14. In the worst case, the gap
is of 25%, and the median performance gap is 11%. Hence despite its local
nature and relatively low computational complexity, the learning procedure
performs quite well when compared to a global search.

We compare between Poisson arrivals, and arrivals according to a Markov-
modulated Poisson process with 2 states. Both states have equal stationary
probability, the average time spent in a state is 1 minute and the arrival
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rate in state 2 the arrival rate in state 1 multiplied by 3. In each case we
estimate the gradient of the cost and calculate the sign of it’s dot product
with the true gradient. If it is positive then the gradient estimate is a valid
ascent direction, and the accuracy of the gradient is the probability of this
dot product being positive. We plot the gradient accuracy as a function of
the length of the simulation on figure 5.15. As expected, the accuracy is less
for Markov modulated arrivals than for Poisson arrivals, since the arrivals
tend to be more bursty, but the gap is not very large. This suggests that the
learning procedure has good numerical performance even when the arrivals
are correlated.
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Figure 5.12: File transfer time during the learning process

5.5 Proofs

5.5.1 Proof of theorem 5.1

The process of arrivals and service requirements is {Tk, 1As
(rk) σk

Rs(rk)
}k∈Z

for
the link between users and station s, and {Tk, 1As

(rk) σk

Rrel,s
}k∈Z

for the link
between the BS and RS s. Since the arrival process is stationary ergodic,
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Figure 5.13: Controller parameters (θ1, θ2, θ3) during the learning process

Loynes theorem (see section 2.1) gives the stability conditions:

λ0|A|E [σ] E0
T

[

1As
(r0)

Rs(r0)

]

< (1− x), (5.44)

λ0|A|E [σ]
NR
∑

s=1

E0
T

[

1As
(r0)

Rrel,s

]

< x (5.45)

with E0
T the Palm expectation with respect to the arrival instants. The

conditions are valid for a G/G/1/PS queue since Loynes theorem holds for
all work-conserving service disciplines.

We write the capacity of the link between the BS and users:

C0(x) = (1− x)

(

∫

A0

1
R0(r)

dr

)−1

(5.46)

and the capacity of the link between the BS and RSs:

Crel(x) = x





NR
∑

s=1

|As|
Rrel,s





−1

(5.47)

Assume that the link between the BS and RSs is stable, its output process is
stationary ergodic, and using a flow conservation argument it has the same
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Figure 5.14: Comparision between local and global optima

intensity as the input. The capacity of the link between RS s and its users
is then:

Cs(x) = (1− x)

(

∫

As

1
Rs(r)

dr

)−1

(5.48)

The stability of the system is equivalent to the stability of all queues, hence:

C(x) = min
(

Crel(x), min
0≤s≤NR

(Cs(x))
)

. (5.49)

Furthermore x → Crel(x) is strictly increasing and x → min
0≤s≤NR

(Cs(x)) is

strictly decreasing, hence the unique optimal point x∗ is:

x∗ =

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr
)−1

(

max
0≤s≤NR

∫

As

1
Rs(r)

dr
)−1

+
(

∑NR
s=1

|As|
Rrel,s

)−1
(5.50)

Substitution of x∗ in the capacity formula yields the maximal capacity which
concludes the demonstration.

5.5.2 Traffic estimation

Theorem 5.4. Consider T > 0 a measurement time and f : A → R - a
function which is measurable, positive and bounded. We define the sequence
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Figure 5.15: Impact of correlated arrivals on gradient estimation accuracy

{Fn}n∈Z
:

Fn =
1
T

∑

k∈Z

f(rk)1[nT,(n+1)T )(Tk). (5.51)

We decompose Fn as a sum of its expectation, a martingale difference and a
term due to the memory of the arrival process:

Fn = E [Fn] + Mn + Gn, (5.52)

Mn = Fn −E [Fn|ξT n] , (5.53)

Gn = E [Fn|ξT n]− E [Fn] . (5.54)

With assumptions 5.1:

E [Fn] =
∫

A

λ(r)f(r)dr. (5.55)

For assumptions 5.2, we further have that:

sup
n

E
[

F 2
n

]

< +∞, (5.56)

and for γ > 1
2
:

1
Nγ

N
∑

n=1

Mn
a.s→

N→+∞
0. (5.57)
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Furthermore:
1
N

N
∑

n=1

Gn
a.s→

N→+∞
0. (5.58)

Finally, for assumptions 5.3, Gn ≡ 0.

We introduce another assumption on the mixing properties of the arrival
process which is necessary for further results:

Assumption 5.5. There exists γ0 < 1 such that for any measurable positive
and bounded function f , if γ0 < γ ≤ 1:

1
Nγ

N
∑

n=1

Gn
a.s→

N→+∞
0. (5.59)

It is noted that for Poisson arrivals (assumptions 5.3), assumptions 5.5
are not needed since Gn ≡ 0.

Proof. Applying the Campbell formula (see section 2.1) to
(r, t) → 1

T
f(r)1[nT,(n+1)T )(t) proves the first claim. We define ‖f‖∞ =

sup
r∈A

|f(r)|. The second claim is proven by:

sup
n

E
[

F 2
n

]

≤ ‖f‖
2
∞

T 2
E
[

N([0, T )×A)2
]

< +∞. (5.60)

Define SN =
∑N

n=1 Mn. Sn is a martingale and E [M2
n] ≤ 2sup

n
E [F 2

n ] < +∞.

Applying the law of large numbers for martingales ([43, 44]) proves the third
claim. Because we have assumed ergodicity of the arrival process,

1
N

N
∑

n=1

Fn →
N→+∞

E [Fn] , (5.61)

so that:
1
N

N
∑

n=1

Gn →
N→+∞

0, (5.62)

which proves the last claim.

5.5.3 Proof of theorem 5.2

ODE
Since ρ does not change, we sometimes omit it for notation clarity. Consider
the ODE ẋ = g(x), and define the Lyapunov function :

U(x) =
1
2

NR
∑

s=1

gs(x)2

ρrel,s

. (5.63)
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We calculate its gradient:

∂U

∂xs

(x) = −gs(x)ρs

ρrel,s

−
NR
∑

s′=1

gs′(x). (5.64)

Its derivative along solutions is:

〈∇U , ẋ〉 = −
NR
∑

s=1

gs(x)2ρs

ρrel,s

−




NR
∑

s=1

gs(x)





2

< 0 (5.65)

It is noted that U is indeed positive definite and radially unbounded. This
proves that x∗ is the unique equilibrium of the ODE and that it is glob-
ally asymptotically stable. Namely all solutions of the ODE converge to x∗,
regardless of the initial condition.

Projected ODE
We have to take the constraint set H into account. Namely, since the iterates
are projected on H , they follow the trajectory of the ODE projected on H .
In the general case, we need to add a projection term to the ODE, that is:

ẋ ∈ g(x) + G(x). (5.66)

G(x) is the minimal “force” which ensures that solutions remain in the con-
straint set H , and G(x) 6= {0} only if x belongs to the boundary of H . We
prove here that solutions of the (non-projected) ODE starting in H remain
in it, hence G(x) ≡ {0}. If xs = 0, then:

ẋs = ρrel,s(1−
NR
∑

s′=1

xs′) ≥ 0, (5.67)

and if
∑NR

s=1 xs = 1 then:

d

dt
(

NR
∑

s=1

xs) = −
NR
∑

s=1

ρsxs < 0. (5.68)

This proves that H is an invariant set of the ODE without the need to add
a projection term.

Stochastic approximation: decreasing step sizes
It is noted that x→ g(ρ, x) is affine hence smooth. We verify the necessary
conditions for stochastic approximation theorems to be valid:

− sup
n

E [gs(ρ[n], x[n])2] ≤ sup
n

E [(ρrel,s[n] + ρs[n])2] < +∞ from theo-

rem 5.4,
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− x→ E [g(ρ[n], x)|ξ[n]] is continuous

− 1
Nγ

∑N
n=1 g(ρ[n], x[n]) − E [g(ρ[n], x[n])|ξ[n]] a.s→

N→+∞
0, for 1

2
< γ ≤ 1

from theorem 5.4

− 1
Nγ

∑N
n=1 E [g(ρ[n], x[n])]−E [g(ρ[n], x[n])|ξ[n]] a.s→

N→+∞
0, for γ0 < γ ≤ 1

from assumptions 5.5

− x → E [g(ρ[n], x)|ξ[n]] is Lipschitz continuous uniformly in ξ[n], be-
cause sup

ξ[n]∈Ξ
E [ρrel,s[n] + ρs[n]|ξ[n]] < +∞.

Applying theorem 2.9 proves that x[n] a.s→
n→+∞

x∗(ρ).

Stochastic approximation: constant step sizes
For constant step sizes, the following properties are needed:

− Ξ is a compact space, and {ξ[n]}n does not depend on {x[n]}n i.e the
noise process is exogenous

− {g(ρ[n], x[n])}n is uniformly integrable since it is bounded in mean
square

− x→ E [g(ρ[n], x)|ξ[n]] is continuous

− {E [g(ρ[n], x[n])|ξ[n]])}n and {E [g(ρ[n], x)|ξ[n]]}n are uniformly inte-
grable since they are bounded in mean square

− 1
N

∑N
n=1(E [g(ρ[n], x[n])] − E [g(ρ[n], x[n])|ξ[n]]) a.s→

N→+∞
0 (actually the

proof only requires convergence in probability)

Applying theorem 2.10 proves that the sequence {x[n]}n converges to x∗(ρ)
in distribution.

5.5.4 Proof of theorem 5.3

P → ρ(P ) is Lipschitz continuous and all its components are bounded away
from 0 on P, hence P → x∗(ρ(P )) is Lipschitz continuous as well. It is also
noted that E [h(ρ[n], P )] = h(ρ(P [n]), P [n]) by linearity.

Decreasing step sizes
We have that:

− sup
n

E [hs(ρ[n], P [n])2] ≤ sup
n

P 2
maxE [(ρs[n] + ρ0[n])2] < +∞ from theo-

rem 5.4,
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− P → E [h(ρ[n], P )|ξ[n]] is continuous

− 1
Nγ

∑N
n=1 h(ρ[n], P [n]) − E [h(ρ[n], P [n])|ξ[n]] a.s→

N→+∞
0 for 1

2
< γ ≤ 1

from theorem 5.4

− 1
Nγ

∑N
n=1 E [h(ρ[n], P [n])]− E [h(ρ[n], P [n])|ξ[n]] a.s→

N→+∞
0, for γ0 < γ ≤

1 from assumptions 5.5

− P → E [h(ρ[n], P )|ξ[n]] is Lipschitz continuous uniformly in ξ[n], be-
cause P → |As(P )| is Lipschitz continuous, and sup

ξ∈Ξ
sup
r∈A

λ(r, [0, T ), ξ0) <

+∞.

Combining theorem 4.4 and theorem 2.9 for Pmin sufficiently small and Pmax

sufficiently large , proves that the sequence {P [n]} converges a.s to L.
Following the same method as [16][Lemma 1, Chapter 6, page 66], we can

rewrite the update equations as:

xs[n + 1] = [xs[n] + ǫngs(ρ[n], x[n])]+H (5.69)

Ps[n + 1] =

[

Ps[n] + ǫn

δn

ǫn

hs(ρ[n], P [n])

]+

P

. (5.70)

In particular:
∣

∣

∣

∣

∣

δn

ǫn

E [hs(ρ[n], P [n])]

∣

∣

∣

∣

∣

≤ δn

ǫn

sup
n

√

E [hs(ρ[n], P [n])2]

→
n→+∞

0 (5.71)

Applying theorem 2.9 once again, we have that {x[n], P [n]}n converges a.s
to the set {(x∗(ρ(P )), P ) : P ∈ P}, which an asymptotically stable set for
the ODE:

˙x(t) = g(x(t)), Ṗ (t) = 0, (5.72)

projected on H × P. Hence {(x[n], P [n])}n converges a.s a set on which all
loads are equal for decreasing step sizes.

Constant step sizes
For the constant step sizes:

− Ξ is a compact space, and the noise process is exogenous

− {h(ρ[n], P [n])}n is uniformly integrable since it is bounded in mean
square

− P → E [h(ρ[n], P )|ξ[n]] is continuous
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− {E [hs(ρ[n], P [n])|ξ[n]])}n and {E [h(ρ[n], P )|ξ[n]]}n are uniformly in-
tegrable since it they are bounded in mean square

− 1
N

∑N
n=1(E [h(ρ[n], P [n])]−E [h(ρ[n], P [n])|ξ[n]]) a.s→

N→+∞
0 (and in prob-

ability)

From theorem 4.4, and theorem 2.10, for Pmin sufficiently small and Pmax

sufficiently large , this proves that {P [n]}n converges in distribution to L
when ǫ→ 0+. Using the same technique as in the decreasing step size case,
we write

xs[n + 1] = [xs[n] + ǫgs(ρ[n], x[n])]+H (5.73)

Ps[n + 1] =

[

Ps[n] + ǫ
δ(ǫ)

ǫ
hs(ρ[n], P [n])

]+

P

, (5.74)

and:

δ(ǫ)
ǫn′′

∣

∣

∣

∣

∣

∣

n′+n′′
∑

n=n′

E [hs(ρ[n], P [n])]

∣

∣

∣

∣

∣

∣

≤ δ(ǫ)
ǫ

sup
n

√

E [hs(ρ[n], P [n])2] →
ǫ→0+

0 (5.75)

so theorem 2.10 proves that {x[n], P [n]}n converges in distribution to {(x∗(ρ(P )), P ) :
P ∈ P}. This justifies that {(x[n], P [n])}n converges in distribution to a set
on which all loads are equal when ǫ→ 0.
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Chapter 6

Conclusion and future work

In this thesis we have studied the design, modeling and performance eval-
uation of SON mechanisms in wireless networks. We have proposed SON
algorithms for some important use cases. Flow-level dynamics where users
arrive and depart dynamically have been taken into account using queuing
models. The convergence of the proposed mechanisms has been proven us-
ing mathematical tools such as stochastic approximation and reinforcement
learning. The proposed solutions fulfill the important requirements of: imple-
mentability in the control plane, stability, robustness to noise, low signaling
overhead and tolerance to delays.

In this thesis, we have developed and studied SON mechanisms as stand-
alone entities. This has allowed us to establish convergence of a SON mech-
anism when it is the only entity modifying network parameters. In practical
deployments, several SON mechanisms will act simultaneously on the net-
work parameters, on the same time scale. One can for example think of a
load balancing mechanism adjusting cell sizes while another mechanism per-
forms ICIC. Those two mechanisms have different objectives and there is no
guarantee that their interaction will not cause instability. For the SON tech-
nology to be adopted by network operators, there is a need for a simple and
robust coordination mechanism. We believe that the coordination problem
is one of the most important open problems in SON research, and an enabler
for large scale deployment of SON.

Another interesting perspective would be to consider more realistic queu-
ing models and investigate whether the convergence of the proposed SON
mechanisms still holds. The influence of user mobility and handovers for
instance seems to be an interesting problem. The load balancing mechanism
has been designed to minimize the maximal load and ensure stability when-
ever possible. This is roughly equivalent to minimizing the blocking rate of
the network. It would be interesting to develop a load balancing mechanism
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which minimizes the average file transfer time.



Chapter 7

Appendices

7.1 Simulation methodology

We detail briefly the standard simulation methodology used for system sim-
ulations. Unless explicitly stated, all network simulation results contained in
this thesis use this model.

The signal attenuation from location r to r′ is the product of two terms:

L(r, r′) = D(r, r′)10
S(r,r′)

10 , (7.1)

with D and S path loss and shadowing respectively. Path loss represents
losses due to distance on a coarse spatial scale and is chosen as a power law:

D(r, r′) =
A

‖r − r′‖η , (7.2)

with η ≥ 2. η = 2 corresponds to free space propagation and η = 3.5 to
a dense urban environment. Shadowing represents variations of the signal
attenuation on a finer spatial scale due to obstacles such as buildings. Shad-
owing is chosen as a stationary centered Gaussian process:

S(r, r′) ≡ N (0, σ2), (7.3)

with σ the shadowing standard deviation. A typical value for σ is between 0
and 10 dB. We do not assume r′ → S(r, r′) to be a white process. Typically
the law of r′ → S(r, r′) involves a correlation distance d; i.e

E [S(r, r′)S(r, r′′)] ≈ 0 if ‖r′′ − r′‖ ≥ d. (7.4)

We assume that shadowing processes of two transmitters (e.g base stations)
placed at different locations are independent. This is reasonable since we
typically consider base stations which are several hundreds of meters apart.
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Figure 7.1: 19 cells hexagonal network with wrap-around

Given NBS base stations with locations {rs}1≤s≤NBS
and transmitted pow-

ers {Ps}1≤s≤NBS
, the SINR at location r while being served by base station

s is calculated by:

SINR(r, s) =
PsL(rs, r)

WN0 +
∑

s′ 6=s Ps′L(rs′, r)
(7.5)

with W the bandwidth and N0 the thermal noise spectral power density.
The basic network consists of 19 hexagonal cells. In order to avoid border

effects, a wrap-around technique is used, and is equivalent to placing the
stations on a torus. Figure 7.1 represents the network layout.
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7.2 Acronyms

3GPP 3rd Generation Partnership Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

AEP Asymptotic Equi-repartition Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

a.e almost everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

a.s almost surely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

AWGN Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

BS Base Station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

c.c.d.f complementary cumulative distribution function. . . . . . . . . . . . . . . . 108

c.d.f cumulative distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

CDMA Code Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CTMDP Continuous Time Markov Decision Process . . . . . . . . . . . . . . . . . . . 70

DTMDP Discrete Time Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . 71

FTP File Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

HetNet Heterogeneous Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

HSPA High Speed Packet Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
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ICIC Inter-Cell Interference Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i.i.d independent and identically distributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iif if and only if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ITU International Telecommunication Union . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

KKT Karush-Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

KPI Key Performance Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

LTE Long Term Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

MAC Medium Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

MDP Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

MIMO Multiple Input Multiple Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

MMF Max-Min Fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

MTP Max Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

NGMN Next Generation Mobile Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ODE Ordinary Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

OFDMA Orthogonal Frequency-Division Multiple Access . . . . . . . . . . . . . . 49
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OMC Operation and Maintenance Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

PF Proportional Fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

POMDP Partially Observable Markov Decision Process. . . . . . . . . . . . . . .137

PRB Physical Resource Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

p.d.f probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

PS Processor Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

REM Radio Environment Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

RR Round Robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

RRM Radio Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RS Relay Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

SINR Signal to Interference plus Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . .51

SMDP Semi-Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

SNR Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

SON Self-organizing networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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TDMA Time Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

V-BLAST Vertical Bell Labs Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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entropy, 38
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MIMO, 51
mixing time, 69
mobility robustness, 24
model-free, 63, 137
modified Shannon formula, 47
monotone dynamical system, 79
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path loss, 153
perfect channel knowledge, 74
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policy, 133
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stochastic, 67, 138
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processor sharing, 120, 124
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Q-learning, 64, 140
QoS, 24
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