Bandit Optimization: Theory and Applications

Richard Combes¹ and Alexandre Proutière²

¹Centrale-Supélec / L2S, France ²KTH, Royal Institute of Technology, Sweden.

SIGMETRICS 2015

Outline

Introduction and examples of application

Tools and techniques

Discrete bandits with independent arms

A first example: sequential treatment allocation

- ► There are T patients with the same symptoms awaiting treatment
- Two treatments exist, one is better than the other
- Based on past successes and failures which treatment should you use?

The model

- ▶ At time n, choose action $x_n \in \mathcal{X}$, observe feedback $y_n(x_n) \in \mathcal{Y}$, and obtain reward $r_n(x_n) \in \mathbb{R}^+$.
- ▶ "Bandit feedback": rewards and feedback depend on actions (often $y_n \equiv r_n$)
- Admissible algorithm:

$$x_{n+1} = f_{n+1}(x_0, r_0(x_0), y_0(x_0), ..., x_n, r_n(x_n), r_n(y_n))$$

Performance metric: regret

$$R(T) = \max_{\mathbf{x} \in \mathcal{X}} \mathbb{E}\left[\sum_{n=1}^{T} r_n(\mathbf{x})\right] - \underbrace{\mathbb{E}\left[\sum_{n=1}^{T} r_n(\mathbf{x}_n)\right]}_{\text{your algorithm}}.$$

Bandit taxonomy: adversarial vs stochastic

Stochastic Bandit:

- Game against a stochastic environment
- ▶ Unknown parameters $\theta \in \Theta$
- $(r_n(x))_n$ is i.i.d with expectation θ_x

Adversarial Bandit:

- Game against a non-adaptive adversary
- ▶ For all x, $(r_n(x))_n$ arbitrary sequence in \mathcal{X}
- At time 0, the adversary "writes down $(r_n(x))_{n,x}$ in an envelope"

Engineering problems are mainly stochastic

Independent vs correlated arms

- ▶ Independent arms: $\Theta = [0, 1]^K$
- ► Correlated arms: $\Theta \neq [0,1]^K$: choosing 1 gives information on 1 and 2

Correlation enables (sometimes much) faster learning.

Bandit taxonomy: frequentist vs bayesian

How to assess an algorithm applied to a *set* of problems?

Frequentist (classical):

- ▶ Problem dependent regret: $R_{\theta}^{\pi}(T)$, θ fixed
- ▶ Minimax regret: $\max_{\theta \in \Theta} R_{\theta}^{\pi}(T)$
- Usually very different regret scaling

Bayesian:

- ▶ Prior distribution $\theta \sim P$, known to the algorithm
- ▶ Bayesian regret: $\mathbb{E}_{\theta \sim P}[R_{\theta}^{\pi}(T)]$
- ▶ P naturally includes information on the problem structure

Bandit taxonomy: cardinality of the set of arms

Discrete Bandits:

- $\mathcal{X} = \{1, ..., K\}$
- All arms can be sampled infinitely many times
- ▶ Regret $O(\log(T))$ (stochastic), $O(\sqrt{T})$ (adversarial)

Infinite Bandits:

- $ightharpoonup \mathcal{X} = \mathbb{N}$, Bayesian setting (otherwise trivial)
- Explore o(T) arms until a good one is found
- ▶ Regret: $O(\sqrt{T})$.

Continuous Bandits:

- $\mathcal{X} \subset \mathbb{R}^d$ convex, $\mathbf{x} \mapsto \mu_{\theta}(\mathbf{x})$ has a *structure*
- Structures: convex, Lipschitz, linear, unimodal (quasi-convex) etc.
- Similar to derivative-free stochastic optimization
- ▶ Regret: $O(\mathbf{poly}(d)\sqrt{T})$.

Bandit taxonomy: regret minimization vs best arm identification

Sample arms and output the best arm with a given probability, similar to PAC learning

Fixed budget setting:

- ▶ T fixed, sample arms $x_1, ..., x_T$, and output \hat{x}^T
- Easier problem: estimation + budget allocation
- ▶ Goal: minimize $\mathbb{P}[\hat{x}^T \neq x^*]$

Fixed confidence setting:

- δ fixed, sample arms $x_1, ..., x_\tau$ and output \hat{x}^τ
- Harder problem: estimation + budget allocation + optimal stopping (τ is a stopping time)
- ▶ Goal: minimize $\mathbb{E}[\tau]$ s.t. $\mathbb{P}[\hat{\mathbf{x}}^{\tau} \neq \mathbf{x}^*] \leq \delta$

Example 1: Rate adaptation in wireless networks

 Adapting the modulation/coding scheme to the radio environment

- ▶ Rates: r_1, r_2, \ldots, r_K
- ▶ Success probabilities: θ_1 , θ_2 , ..., θ_K
- ▶ Throughputs: $\mu_1, \mu_2, \ldots, \mu_K$

Structure: unimodality + $\theta_1 > \theta_2 > \cdots > \theta_K$.

Example 2: Shortest path routing

- Choose a path minimizing expected delay
- ▶ Stochastic delays: $X_i(n)$ ~ Geometric(θ_i)
- ▶ Path $M \in \{0,1\}^d$, expected delay $\sum_{i=1}^d M_i/\theta_i$.
- ▶ Semi-bandit feedback: $X_i(n)$, for $\{i : M_i(n) = 1\}$

Example 3: Learning to Rank (search engines)

- Given a query, N relevant items, L display slots
- ▶ A user is shown L items, scrolls down and selects the first relevant item
- One must show the most relevant items in the first slots.
- θ_n probability of clicking on item n (independence between items is assumed)
- ▶ Reward $r(\ell)$ if user clicks on the ℓ -th item, and 0 if the user does not click

Example 4: Ad-display optimization

- Users are shown ads relevant to their queries
- ▶ Announcers $x \in \{1, ..., K\}$, with μ_x click-through-rate and budget per unit of time c_x
- Bandit with budgets: each arm has a budget of plays
- Displayed announcer is charged per impression/click

Outline

Introduction and examples of application

Tools and techniques

Discrete bandits with independent arms

Optimism in the face of uncertainty

- Replace arm values by upper confidence bounds
- ▶ "Index" $b_X(n)$ such that $b_X(n) \ge \theta_X$ with high probability
- ▶ Select the arm with highest index $x_n \in \arg \max_{x \in \mathcal{X}} b_x(n)$
- Analysis idea:

$$\mathbb{E}[t_{x}(T)] \leq \underbrace{\sum_{n=1}^{T} \mathbb{P}[b_{x^{\star}}(n) \leq \theta^{\star}]}_{o(\log(T))} + \underbrace{\sum_{n=1}^{T} \mathbb{P}[x_{n} = x, b_{x}(n) \geq \theta^{\star}]}_{dominant term}.$$

Almost all algorithms in the literature are optimistic (sic!)

Information theory and statistics

- ▶ Distribtions P, Q with densities p and q w.r.t a measure m
- Kullback-Leibler divergence:

$$D(P||Q) = \int_{X} p(x) \log \left(\frac{p(x)}{q(x)}\right) m(dx),$$

Pinsker's inequality:

$$\sqrt{\frac{D(P||Q)}{2}} \geq TV(P,Q) = \frac{1}{2} \int_{x} |p(x) - q(x)| m(dx).$$

If P, Q ~ Ber(p), Ber(q):

$$D(P||Q) = p \log \left(\frac{p}{q}\right) + (1-p) \log \left(\frac{1-p}{1-q}\right)$$

▶ Also (Pinkser + inequality $log(x) \le x - 1$):

$$2(p-q)^2 \le D(P||Q) \le \frac{(p-q)^2}{q(1-q)}$$

The KL-divergence is ubiquitous in bandit problems

Empirical divergence and Sanov's inequality

- ightharpoonup P a discrete distribution with support \mathcal{P}
- $ightharpoonup \hat{P}_n$ empirical distribution of an i.i.d sample of size *n* from *P*,
- Sanov's inequality:

$$\mathbb{P}[D(\hat{P}_n||P) \geq \delta] \leq \binom{n+|\mathcal{P}|-1}{|\mathcal{P}|+1} e^{-n\delta}$$

▶ Suggests confidence regions (risk α) of the type:

$$\{P: n D(\hat{P}_n||P) \leq \log(1/\alpha)\}$$

Hypothesis testing and sample complexity

- How many samples are needed to distinguish P from Q?
- ▶ Observe $X = (X_1, ..., X_n)$ i.i.d with distribution P^n or Q^n
- ▶ Additivity of the KL divergence: $D(P^n||Q^n) = nD(P||Q)$
- ▶ Test $\phi(X) \in \{0, 1\}$, risk $\alpha > 0$:

$$\mathbb{E}_{P}[\phi(X)] + \mathbb{E}_{Q}[1 - \phi(X)] \le \alpha$$

Tsybakov's inequality:

$$(1/2)e^{-\min\{D(P^n||Q^n),D(Q^n||P^n)\}} \leq \mathbb{E}_P[\phi(X)] + \mathbb{E}_Q[1-\phi(X)]$$

Minimal number of samples:

$$n \ge \frac{\log(1/\alpha) - \log(2)}{\min\{D(P||Q), D(Q||P)\}}$$

Regret Lower Bounds: general technique

- ▶ Decision x, two parameters θ , λ , with $x^*(\lambda) = x \neq x^*(\theta)$.
- ► Consider consider an algorithm with $R^{\pi}(T) = \log(T)$ for all parameters (unformly good):

$$\mathbb{E}_{\theta}[t_x(T)] = O(\log(T)) \ , \ \mathbb{E}_{\lambda}[t_x(T)] = T - O(\log(T)).$$

Markov inequality:

$$\mathbb{P}_{\theta}[t_{x}(T) \geq T/2] + \mathbb{P}_{\lambda}[t_{x}(T) < T/2] \leq O(T^{-1}\log(T)).$$

- ▶ $\mathbf{1}\{t_x(T) \le T/2\}$ is a hypothesis test, risk $O(T^{-1}\log(T))$
- Hence (Neyman-Pearson / Tsybakov):

$$\sum_{x} \mathbb{E}_{\theta}[t_{x}(T)]I(\theta_{x},\lambda_{x}) \geq \log(T) - O(\log(\log(T))).$$

KL divergence of the observations

Concentration inequalities: Chernoff bounds

- Building indexes requires tight concentration inequalities
- Chernoff bounds: upper bound the MGF
- ▶ $X = (X_1, ..., X_n)$ independent, with mean μ , $S_n = \sum_{n'=1}^n X_{n'}$
- G such that $\log(\mathbb{E}[e^{\lambda(X_n-\mu)}]) \leq G(\lambda)$, $\lambda \geq 0$
- Generic technique:

$$\begin{split} \mathbb{P}[S_n - n\mu \geq \delta] &= \mathbb{P}[e^{\lambda(S_n - n\mu)} \geq e^{\lambda\delta}] \\ &\leq e^{-\lambda\delta} \mathbb{E}[e^{\lambda(S_n - n\mu)}] \text{ (Markov)} \\ &= \exp(nG(\lambda) - \lambda\delta) \text{ (independence)} \\ &\leq \exp\left(-n\max_{\lambda \geq 0} \{\lambda\delta n^{-1} - G(\lambda)\}\right). \end{split}$$

Concentration inequalities: Chernoff and Hoeffding's inequality

- ▶ Bounded variables: if $X_n \in [a, b]$ a.s then $\mathbb{E}[e^{\lambda(X_n \mu)}] \le e^{\lambda^2(b-a)^2/8}$ (Hoeffding lemma)
- ► Hoeffding's inequality:

$$\mathbb{P}[S_n - n\mu \ge \delta] \le \exp\left(-\frac{2\delta^2}{n(b-a)^2}\right)$$

- ▶ Subgaussian variables: $\mathbb{E}[e^{\lambda(X_n-\mu)}] \leq e^{\sigma^2\lambda^2/2}$, similar
- ▶ Bernoulli variables: $\mathbb{E}[e^{\lambda(X_n-\mu)}] = \mu e^{\lambda(1-\mu)} (1-\mu)e^{-\lambda\mu}$
- Chernoff's inequality:

$$\mathbb{P}[S_n - n\mu \ge \delta] \le \exp(-nI(\mu + \delta/n, \mu))$$

▶ Pinsker's inequality: Chernoff is stronger than Hoeffding.

Concentration inequalities: variable sample size and peeling

- In bandit problems, the sample size is random and depends on the samples themselves
- ▶ Intervals $\mathcal{N}_k = \{n_k, ..., n_{k+1}\}$, $\mathcal{N} = \cup_{k=1}^K \mathcal{N}$
- ▶ Idea: $Z_n = e^{\lambda(S_n n\mu)}$ is a positive sub-martingale:

$$\begin{split} \mathbb{P}[\max_{n \in \mathcal{N}_k} (S_n - \mu n) \geq \delta] &= \mathbb{P}[\max_{n \in \mathcal{N}_k} Z_n \geq e^{\lambda \delta})] \\ &\leq e^{-\lambda \delta} \mathbb{E}[Z_{n_{k+1}}] \text{ (Doob's inequality)} \\ &= \exp(-\lambda \delta + n_{k+1} G(\lambda)) \\ &\leq \exp\left(-n_{k+1} \max_{\lambda > 0} \{\lambda \delta n_{k+1}^{-1} - G(\lambda)\}\right). \end{split}$$

▶ Peeling trick (Neveu): union bound over k, $n_k = (1 + \alpha)^k$.

Concentration inequalities: self normalized versions

- Self-normalized versions of classical inequalities
- Garivier's inequality:

$$\mathbb{P}\left[\max_{1\leq n\leq T} nI(S_n/n,\mu) \geq \delta\right] \leq 2e\lceil\log(T)\delta\rceil e^{-\delta}$$

► From Pinkser's inequality (self-normalized Hoeffding):

$$\mathbb{P}\left[\max_{1\leq n\leq T}\sqrt{n}|S_n/n-\mu|\geq \delta\right]\leq 4e\lceil\log(T)\delta^2\rceil e^{-2\delta^2}$$

▶ Multi-dimensional version, $Y_{n_k}^k = n_k I(S_{n_k}/n_k, \mu)$

$$\mathbb{P}\left[\max_{(n_1,\ldots,n_K)\in[1,T]^K}\sum_{k=1}^K Y_{n_k}^k \geq \delta\right] \leq C_K(\log(T)\delta)^K e^{-\delta}$$

Outline

Introduction and examples of application

Tools and techniques

Discrete bandits with independent arms

The Lai-Robbins bound

- Actions $\mathcal{X} = \{1, ..., K\}$
- ▶ Rewards $\theta = (\theta_1, ..., \theta_K) \in [0, 1]^K$
- ▶ Uniformly good algorithm: $R(T) = O(\log(T))$, $\forall \theta$

Theorem (Lai '85)

For any uniformly good algorithm, and x s.t $\theta_x < \theta^*$ we have:

$$\lim\inf_{T\to\infty}\frac{\mathbb{E}[t_{\scriptscriptstyle X}(T)]}{\log(T)}\geq\frac{1}{I(\mu_{\scriptscriptstyle X},\mu^{\star})}$$

▶ For $x \neq x^*$, apply the generic technique with:

$$\lambda = (\theta_1, ..., \theta_{x-1}, \theta^* + \epsilon, \theta_{x+1}, ..., \theta_K)$$

The Lai-Robbins bound

Optimistic Algorithms

- ▶ Select the arm with highest index $x_n \in \arg \max_{x \in \mathcal{X}} b_x(n)$
- UCB algorithm (Hoeffding's ineqality):

$$b_X(n) = \underbrace{\hat{ heta}_X(n)}_{ ext{empirical mean}} + \underbrace{\sqrt{\frac{2\log(n)}{t_X(n)}}}_{ ext{exploration bonus}}.$$

KL-UCB algorithm (using Garivier's inequality):

$$b_{x}(n) = \max\{q \leq 1 : \underbrace{t_{x}(n)I(\hat{\theta}_{x}(n),q)}_{\text{likelihood ratio}} \leq \underbrace{f(n)}_{\text{log(confidence level}^{-1})}\}.$$

with
$$f(n) = \log(n) + 3\log(\log(n))$$
.

Regret of optimistic Algorithms

Theorem (Auer'02)

Under algorithm UCB, for all x s.t $\theta_x < \theta^*$:

$$\mathbb{E}[t_X(T)] \leq \frac{8\log(T)}{(\theta_X - \theta^*)^2} + \frac{\pi^2}{6}.$$

Theorem (Garivier'11)

Under algorithm KL-UCB, for all x s.t $\theta_x < \theta^*$ and for all $\delta < \theta^* - \theta_x$:

$$\mathbb{E}[t_{\mathsf{x}}(T)] \leq \frac{\log(T)}{I(\theta_{\mathsf{x}} + \delta, \theta^{\star})} + C\log(\log(T)) + \delta^{-2}.$$

Regret of KL-UCB: sketch of proof

Decompose:

$$\mathbb{E}[t_{x}(T)] \leq \mathbb{E}[|A|] + \mathbb{E}[|B|] + \mathbb{E}[|C|],$$

$$A = \{n \leq T : b_{x^{*}}(n) \leq \theta^{*}\},$$

$$B = \{n \leq T : n \notin A, x_{n} = x, |\hat{\theta}_{x}(n) - \theta_{x}| \geq \delta\},$$

$$C = \{n \leq T : n \notin A, x_{n} = x, |\hat{\theta}_{x}(n) - \theta_{x}| \leq \delta,$$

$$t_{x}(T) \leq f(T)/I(\theta_{x} + \delta, \theta^{*})\}.$$

Union bound:

$$\begin{split} \mathbb{E}[|A|] &\leq C \log(\log(T)), & \text{(Index property)} \\ \mathbb{E}[|B|] &\leq \delta^{-2}, & \text{(Hoeffding + Union bound)} \\ |C| &\leq f(T)/I(\theta_X + \delta, \theta^\star) & \text{(Counting)} \end{split}$$

Randomized algorithms: Thompson Sampling

- ▶ Prior distribution $\theta \sim P$
- ► Time n, select x with probability $\mathbb{P}[\theta_x = \max_{x'} \theta_{x'} | x_0, r_0, ..., x_n, r_n]$

Bernoulli with uniform priors:

- $ightharpoonup Z_X(n) \sim \operatorname{Beta}(t_X(n)\hat{\theta}_X(n) + 1, t_X(n)(1 \hat{\theta}_X(n)) + 1)$
- $ightharpoonup x_{n+1} \in \operatorname{arg\,max}_{X} Z_{X}(n)$

Theorem (Kaufmann'12, Agrawal'12)

Thompson sampling is asymptotically optimal. If $\theta_x < \theta^*$ then:

$$\lim \sup_{T \to \infty} \frac{\mathbb{E}[t_x(T)]}{\log(T)} \le \frac{1}{I(\theta_x, \theta^*)}.$$

Illustration of algorithms (one sample path)

 $\hat{\mu}_3(n)$

1.2

90

The EXP3 algorithm

- Adversarial setting: arm selection <u>must</u> be randomized
- At time n, select x_n with distribution $p(n) = (p_1(n), ..., p_K(n))$
- Reward estimate for x (unbiased):

$$R_X(n) = \sum_{n'=1}^n \tilde{r}_X(n') = \sum_{n'=1}^n \frac{r_n}{p_X(n)} \mathbf{1} \{ x_n = x \}$$

- ▶ Action distribution, $p_x(n) \propto \exp(\eta R_x(n))$ with $\eta > 0$ fixed.
- Favor actions with good historical rewards + explore a bit:
 p(n) is a soft approximation to the max function
- For small η , EXP3 is the replicator dynamics (!)

Regret of EXP3

Theorem

Under EXP3 with $\eta = \sqrt{\frac{2 \log(K)}{KT}}$, the regret is upper bounded by:

$$R^{\pi}(T) \leq \sqrt{2TK\log(K)}$$

- Larger exponent in T, but smaller in K
- Suggests two regimes for (K, T): Stochastic regime vs.
 Adversarial regime
- Matching lower bound: consider a stochastic adversary with close arms

Discrete bandits

- Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, 1933
- Robbins, Some aspects of the sequential design of experiments, 1952
- Lai and Robbins. Asymptotically efficient adaptive allocation rules, 1985
- Lai. Adaptive treatment allocation and the multi-armed bandit problem, 1987
- Gittins, Bandit Processes and Dynamic Allocation Indices, 1989
- Auer, Cesa-Bianchi and Fischer, Finite time analysis of the multiarmed bandit problem. 2002.
- Garivier and Moulines, On upper-confidence bound policies for non-stationary bandit problems, 2008
- Slivkins and Upfal, Adapting to a changing environment: the brownian restless bandits, 2008

- Garivier and Cappé. The KL-UCB algorithm for bounded stochastic bandits and beyond, 2011
- Honda and Takemura, An Asymptotically Optimal Bandit Algorithm for Bounded Support Models, 2010

Discrete bandits with correlated arms

- Anantharam, Varaiya, and Walrand, Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays, 1987
- Graves and Lai Asymptotically efficient adaptive choice of control laws in controlled Markov chains, 1997
- György, Linder, Lugosi and Ottucsák, The on-line shortest path problem under partial monitoring, 2007
- Yu and Mannor, Unimodal bandits, 2011
- Cesa-Bianchi and Lugosi, Combinatorial bandits, 2012.

- Gai, Krishnamachari, and Jain, Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations, 2012
- Chen, Wang and Yuan. Combinatorial multi-armed bandit: General framework and applications, 2013
- Combes and Proutiere, Unimodal bandits: Regret lower bounds and optimal algorithms, 2014
- Magureanu, Combes, and Proutiere. Lipschitz bandits: Regret lower bounds and optimal algorithms, 2014.

Thompson Sampling

- Chapelle and Li, An Empirical Evaluation of Thompson Sampling, 2011
- Korda, Kaufmann and Munos, Thompson Sampling: an asymptotically optimal finite-time analysis, 2012
- Korda, Kaufmann and Munos, Thompson Sampling for one-dimensional exponential family bandits, 2013.

- Agrawal and Goyal, Further optimal regret bounds for Thompson Sampling, 2013.
- Agrawal and Goyal, Thompson Sampling for contextual bandits with linear payoffs, June 2013.

Discrete adversarial bandits

- Auer, Cesa-Bianchi, Freund and Schapire, The non-stochastic multi-armed bandit, 2002

Continuous Bandits (Lipschitz)

- R. Agrawal, The continuum-armed bandit problem, 1995
- Auer, Ortner, and Szepesvári, Improved rates for the stochastic continuum-armed bandit problem, 2007
- Bubeck, Munos, Stoltz, and Szepesvári, Online optimization in x-armed bandits, 2008

- Kleinberg. Nearly tight bounds for the continuum-armed bandit problem, 2004
- Kleinberg, Slivkins, and Upfal, Multi-armed bandits in metric spaces, 2008
- Bubeck, Stoltz and Yu, Lipschitz bandits without the Lipschitz constant, 2011

Continuous Bandits (strongly convex)

- Cope, Regret and convergence bounds for a class of continuum-armed bandit problems, 2009
- Flaxman, Kalai, and McMahan, Online convex optimization in the bandit setting: gradient descent without a gradient, 2005
- Shamir, On the complexity of bandit and derivative-free stochastic convex optimization, 2013
- Agarwal, Foster, Hsu, Kakade, and Rakhlin, Stochastic convex optimization with bandit feedback, 2013.

Continuous Bandits (linear)

- Dani, Hayes, and Kakade, Stochastic linear optimization under bandit feedback, 2008
- Rusmevichientong and Tsitsiklis, Linearly Parameterized Bandits, 2010
- Abbasi-Yadkori, Pal, Szepesvári, Improved Algorithms for Linear Stochastic Bandits, 2011

Best Arm identification

- Mannor and Tsitsiklis, The sample complexity of exploration in the multi-armed bandit problem, 2004
- Even-Dar, Mannor, Mansour, Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems, 2006
- Audibert, Bubeck, and Munos, Best arm identification in multi-armed bandits, 2010.

- Kalyanakrishnan, Tewari, Auer, and Stone, Pac subset selection in stochastic multi-armed bandits, 2012
- Kaufmann and Kalyanakrishnan, Information complexity in bandit subset selection, 2013
- Kaufmann, Garivier and Cappé, On the Complexity of A/B Testing, 2014

Infinite Bandits

- Berry, Chen, Zame, Heath, and Shepp, Bandit problems with infinitely many arms, 1997.
- Wang, Audibert, and Munos, Algorithms for infinitely many-armed bandits, 2008.
- Bonald and Proutiere, Two-Target Algorithms for Infinite-Armed Bandits with Bernoulli Rewards, 2013