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Introduction and examples of application
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A first example: sequential treatment allocation

1 2 3 4 5 .. patients
€ DD D L D ..
& DL L L D..
» There are T patients with the same symptoms awaiting

treatment
» Two treatments exist, one is better than the other

» Based on past successes and failures which treatment
should you use ?
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The model

» At time n, choose action x, € X', observe feedback
¥n(Xn) € Y, and obtain reward r,(x,) € RT.

» "Bandit feedback”: rewards and feedback depend on
actions (often y, = rp)

» Admissible algorithm:
Xn+1 = fn1(X0, 10(X0), Yo(X0), -, Xn, In(Xn), In(Yn))

» Performance metric: regret

T T
R(T) = rpe%é(E Z r,,(x)] —E [Z r,,(x,,)] .
n=1 n=1
oracle your aIEorithm

instantaneous
reward

--------- unknown best action

your algorithm

time



Bandit taxonomy: adversarial vs stochastic

Stochastic Bandit:
» Game against a stochastic environment
» Unknown parameters 6 € ©
> (ra(x))n is i.i.d with expectation 6y
Adversarial Bandit:
» Game against a non-adaptive adversary
» For all x, (ry(x))n arbitrary sequence in X

» At time 0, the adversary “writes down (r,(x))n.x in an
envelope”

\ Engineering problems are mainly stochastic\




Independent vs correlated arms

/1’2 ,ug
©

>:U*1

» Independent arms: © = [0, 1]¥

» Correlated arms: © # [0, 1]X: choosing 1 gives
information on 1 and 2

Correlation enables (sometimes much) faster learning.
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Bandit taxonomy: frequentist vs bayesian

’ How to assess an algorithm applied to a set of problems ?

Frequentist (classical):
» Problem dependent regret: R7(T), ¢ fixed
» Minimax regret: maxyce R (T)
» Usually very different regret scaling
Bayesian:
» Prior distribution 6§ ~ P, known to the algorithm
» Bayesian regret: Eg.p[Rj (T)]
» P naturally includes information on the problem structure



Bandit taxonomy: cardinality of the set of arms

Discrete Bandits:

» X ={1,...K}

» All arms can be sampled infinitely many times

» Regret O(log(T)) (stochastic), O(v/T) (adversarial)
Infinite Bandits:

» X = N, Bayesian setting (otherwise trivial)

» Explore o(T) arms until a good one is found

» Regret: O(V/T).
Continuous Bandits:

» X C RY convex, x — pg(x) has a structure

» Structures: convex, Lipschitz, linear, unimodal
(quasi-convex) etc.

» Similar to derivative-free stochastic optimization
» Regret: O(poly(d)V/T).
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Bandit taxonomy: regret minimization vs best arm
identification

Sample arms and output the best arm with a given probability,
similar to PAC learning

Fixed budget setting:
» T fixed, sample arms xq, ..., x7, and output X7
» Easier problem: estimation + budget allocation
» Goal: minimize P[xT # x*|
Fixed confidence setting:
» ¢ fixed, sample arms xq, ..., x; and output X™
» Harder problem: estimation + budget allocation + optimal
stopping (7 is a stopping time)
» Goal: minimize E[r] s.t. P[X™ # x*] <6
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Example 1: Rate adaptation in wireless networks

» Adapting the modulation/coding scheme to the radio

environment

N —
Yes/No
» Rates: r, o, ..., rIx
» Success probabilities: 61, 6>, ... , Ok
» Throughputs: pq, 2, ... , K

Structure: unimodality + 61 > 6> > --- > k.

G

* 8 — & — 06— — 0 ——  —©°

6 9 12 18 24 36 48

54 (Mbit/s)
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Example 2: Shortest path routing

v

Choose a path minimizing expected delay

v

Stochastic delays: X;(n) ~ Geometric(6;)
Path M e {0,1}9, expected delay >°7_, M;/6;.
Semi-bandit feedback: X;(n) , for {i : M;j(n) =1}

v

v
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Example 3: Learning to Rank (search engines)

» Given a query, N relevant items, L display slots

>

jaguar

Web Images  Actwaltés  Vidéos  Maps  Plus~  Outils de recherche

Environ 171 000 000 résultats (0,31 secondes)

Les cookies assurent le bon fonctionnement de nos services. En utiisant ces derniers, vous
acceptez luilisation des cookies

En savoir plus | oK

Jaguar France - Voitures de Sport et Voitures de luxe
www.jaguar.fi/

Découvrez les voitures de luxe Jaguar. Aliant héritage et technologie, les berlines et
voitures de sport Jaauar vous feront vivre une expérience de conduite

A user is shown L items, scrolls down and selects the first
relevant item

One must show the most relevant items in the first slots.

0, probability of clicking on item n (independence between
items is assumed)

Reward r(¢) if user clicks on the ¢-th item, and O if the user
does not click

11 [ Gomeren

Jaguar -
Constructeur automobile acuaR

Jaguar, de son nom officiel

«Jaguar Cars Ltd », est une marque
automobile britannique connue pour ses
voitures de luxe et ses modeles sporifs
Wikioédia
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Example 4: Ad-display optimization

» Users are shown ads relevant to their queries

» Announcers x € {1, ..., K}, with uy click-through-rate and
budget per unit of time ¢,

» Bandit with budgets: each arm has a budget of plays
» Displayed announcer is charged per impression/click

‘ car insurance -

Web mages Maps Shopping Blogs More ~  Search tools

Ads related to car insurance ®

GEICO Auto Insurance - GEICO could save you over $500 SVE
www.geico.com/ ~ &
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Tools and techniques
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Optimism in the face of uncertainty

v

Replace arm values by upper confidence bounds
"Index” bx(n) such that by(n) > 0x with high probability
Select the arm with highest index x, € arg maxxex bx(n)
Analysis idea:

v

v

v

E[t(T)] < Z]P’[bx* < 9*]+Z]P’[xn = X, by(n) > 6*].

n=1

o(log(T)) dominant term

‘ Almost all algorithms in the literature are optimistic (sic!) ‘
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Information theory and statistics

Distribtions P, Q with densities p and g w.r.t a measure m
Kullback-Leibler divergence:

D(PIIQ) = [ p(x)log (Zg;) m(ak),

vy

v

Pinsker’s inequality:
D(P|Q)
2

>TV(P,Q) = /|p x)|m(dx).
If P, Q ~ Ber(p), Ber(q):
D(PIQ) = plog (£) + (1 - p)iog ;=% )

Also (Pinkser + inequality log(x) < x —1):

v

v

(b—q)?
2(p - ) < D(PIIQ) < iy

\The KL-divergence is ubiquitous in bandit problems\
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Empirical divergence and Sanov’s inequality

v

P a discrete distribution with support P
P, empirical distribution of an i.i.d sample of size n from P,
Sanov’s inequality:

v

v

o n+[Pl=1\ __ps
> <
IP[D(P,,HP)_(S]_( P41 )e

v

Suggests confidence regions (risk «) of the type:

{P:n D(P||P) < log(1/a)}
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Hypothesis testing and sample complexity

v

How many samples are needed to distinguish P from Q ?
Observe X = (Xj, ..., Xp) i.i.d with distribution P" or Q"
Additivity of the KL divergence: D(P"||Q") = nD(P||Q)
Test ¢(X) € {0,1}, risk a > 0O:

v

v

v

Ep[p(X)] + Eq[l — ¢(X)] < a

v

Tsybakov’s inequality:

(1/2)e” MnPEIALBQIEIY < Bp[g(X)] + Eq[1 — ¢(X)]

v

Minimal number of samples:

log(1/a) —log(2)
=~ min{D(P||Q), D(Q||P)}
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Regret Lower Bounds: general technique

v

Decision x, two parameters 6, A, with x*(\) = x # x*(6).
Consider consider an algorithm with R™(T) = log(T) for all
parameters (unformly good):

Eg[te(T)] = O(log(T)) , Ex[t«(T)] = T — O(log(T)).

Markov inequality:

v

v

Po[tx(T) > T/2] + Py[t(T) < T/2] < O(T~'log(T)).

v

1{t,(T) < T/2} is a hypothesis test, risk O(T~"log(T))
Hence (Neyman-Pearson / Tsybakov):

ZEe[tx N(0x, Ax) = 1og(T) — O(log(log(T))).

v

KL divergence of the observations
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Concentration inequalities: Chernoff bounds

v

Building indexes requires tight concentration inequalities
Chernoff bounds: upper bound the MGF

X = (X1, ..., Xp) independent, with mean p, Sp = Y1 _ Xy
G such that log(E[e*X—1]) < G(\), A >0
Generic technique:

v

v

v

v

P[Sy — nu > 6] = P[eMS—) > 2]
< e ME[eNS—™)] (Markov)
= exp(nG(\) — \9) (independence)

< exp (—nr?iag)({)\én‘1 — G(A)}) :

20/40



Concentration inequalities: Chernoff and Hoeffding’s
inequality
» Bounded variables: if X, € [a, b] a.s then
E[eXX-1)] < e\*(b-a)°/8 (Hoeffding lemma)
Hoeffding’s inequality:

v

262

v

Subgaussian variables: E[e*X—1)] < e7*3*/2  gimilar
Bernoulli variables: E[e*Xn—1)] = e 1=1) — (1 — )e
Chernoff’s inequality:

v

v

P[Sn — nu > 0] < exp(—nl(p+d/n, 1))

v

Pinsker’s inequality: Chernoff is stronger than Hoeffding.
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Concentration inequalities: variable sample size and
peeling

» In bandit problems, the sample size is random and
depends on the samples themselves

> Intervals Nk = {nk, ..., lki1}, N = UK NV
» ldea: Z, = eMS ") is a positive sub-martingale:

P — >8] =P Z, > e’
[%%(Sn pn) = 4] [,rg% n=>e")

< e ME[Z,,.,] (Doob’s inequality)
= exp(—Ad + k1 G(A))

< - P :
<exp < N 41 n;;lé({)\én,ﬂr1 G()\)}>
» Peeling trick (Neveu): union bound over k, ng = (1 + a)k.
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Concentration inequalities: self normalized versions

v

Self-normalized versions of classical inequalities

v

Garivier’s inequality:

P [ max_nl(Sy/n, u) > 5] < 2eflog(T)s1e™°

1<n<

v

From Pinkser’s inequality (self-normalized Hoeffding):

P { max_/n|Sp/n — p| > 5} < 4e[log(T)s?]e 2"
1<n<T

v

Multi-dimensional version, Y,’,‘k = i l(Sp,/ Nk, 1)

P [( max Z YK > 5] < Ck(log(T)o)Ke™
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Discrete bandits with independent arms
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The Lai-Robbins bound

» Actions X = {1,...,K}

» Rewards 6 = (4, ...,0k) € [0,1]¥

» Uniformly good algorithm: R(T) = O(log(T)) , V6
Theorem (Lai ’'85)

For any uniformly good algorithm, and x s.t 0x < 8* we have:

.. E[t(T)] 1
"M 10 Tog(T) = Tl )

» For x # x*, apply the generic technique with:
A= (91, vy Ox_1, 0" + €0x11, ..y 9K)
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The Lai-Robbins bound

C¥

Most confusing

&
o / parameter
)
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Optimistic Algorithms

» Select the arm with highest index x, € argmaxyecx bx(n)
» UCB algorithm (Hoeffding’s ineqality):

- bon [

empirical mean ——
exploration bonus

» KL-UCB algorithm (using Garivier’s inequality):

by(n) = max{q < 1: t(n)I(6x(n),q) < f(n) b
| R — ~—~
likelihood ratio log(confidence level ')

with f(n) = log(n) + 3log(log(n)).
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Regret of optimistic Algorithms

Theorem (Auer’02)
Under algorithm UCB, for all x s.t0x < 0*:

2
E[t(T)] < % + X

Theorem (Garivier'11)

Under algorithm KL-UCB, for all x s.t0x < 68* and for all
0 < 0% —0y:

E[t(T)] < % + Clog(log(T)) + 672.
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Regret of KL-UCB: sketch of proof

Decompose:

E[t(T)] < E[|A]] + E[|B]] + E[|C]],
A={n<T:bxy(n) <6},
B={n<T:n¢Ax,=x|0x(n) —6x| > 35},
C={n<T:n¢Axy=x,|0x(n) — 0| <9,

t(T) < £(T)/1(0x +6,67)}.

Union bound:
E[|A]] < Clog(log(T)), (Index property)
E[|B] <472, (Hoeffding + Union bound)

|C| < f(T)/I(0x + 0,60%) (Counting)
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Randomized algorithms: Thompson Sampling

» Prior distribution 6 ~ P
» Time n, select x with probability
P[0x = maxy: 0x|Xo, fo, ---y Xn, In]
Bernoulli with uniform priors:
> Zy(n) ~ Beta(ty(n)dx(n) + 1, t(n)(1 — bx(n)) + 1)
> Xpiy € argmaxy Zx(n)

Theorem (Kaufmann’12 , Agrawal’12)

Thompson sampling is asymptotically optimal. If 6y < 6* then:

. E[t(T)] 1
"M 3P og(T) = (6.0
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lllustration of algorithms (one sample path)

1.2

0.8]

0.6]

0.4]

0.2]

uce

n=102 t(n) = (20,29, 54)
fta(n)

w102 tn) = (5,3,95)

Regret R(T)

0.8]

0.6]

0.4]

0.2]

KL-ucB

n=102 t(n) = (2,5,96)

fis(n)

fia(n)

Regret of various algorithms

10|

10 20 30 40 60 70 80 90 100

50
Time T
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The EXP3 algorithm

» Adversarial setting: arm selection must be randomized
» At time n, select x, with distribution

p(n) = (p1(n), .., px(n))
» Reward estimate for x (unbiased):

n n

— ¥ ) — In —
Rx(n) = ,,/2—21 F(n') = ,,/2_21 px(n)1{xn = x}
» Action distribution, px(n) o exp(nRx(n)) with n > 0 fixed.

» Favor actions with good historical rewards + explore a bit:
p(n) is a soft approximation to the max function

» For small n, EXP3 is the replicator dynamics (!)
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Regret of EXP3

Under EXP3 withn = 4/ 2'%}'(), the regret is upper bounded by:

R™(T) < v/2TKlog(K)

» Larger exponentin T, but smaller in K

» Suggests two regimes for (K, T): Stochastic regime vs.
Adversarial regime

» Matching lower bound: consider a stochastic adversary
with close arms
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