Bandit Optimization: Theory and Applications

- Part 2 -

R. Combes, A. Proutiere

Part 2. Structured Bandits

Discrete Structured Bandits

- Regret lower bounds
- 2. Examples
- Efficient algorithms for some structures: unimodal, Lipschitz

Infinite Bandits

- Regret lower bounds
- 2. Optimal algorithms

Continuous Structured Bandits

- Regret lower bounds
- 2. Unimodal bandits
- 3. Lipschitz bandits

Conclusion and Open Problems

2-A. Discrete Structured Bandits

Discrete Structured Bandits

- Karms
- Reward distributions parametrized by $heta = (heta_1, \dots, heta_K)$
- Average reward of arm k: $\mu_k = \mu_k(\theta)$
- Most often, reward distributions are taken from a single parameter exponential family (e.g. Bernoulli, $\theta_k = \mu_k$)
- K can be very large yielding a prohibitive regret if arms are independent, i.e., $\Theta(K\log(T))$
- Structure matters and has to be exploited!
- Notation: $\mu^*(\theta) = \max_k \mu_k(\theta) = \mu_{k^*}(\theta)$

Discrete Structured Bandits

- Unstructured bandits: average rewards are not related

$$\mu = (\mu_1, \dots, \mu_K) \in \Theta$$

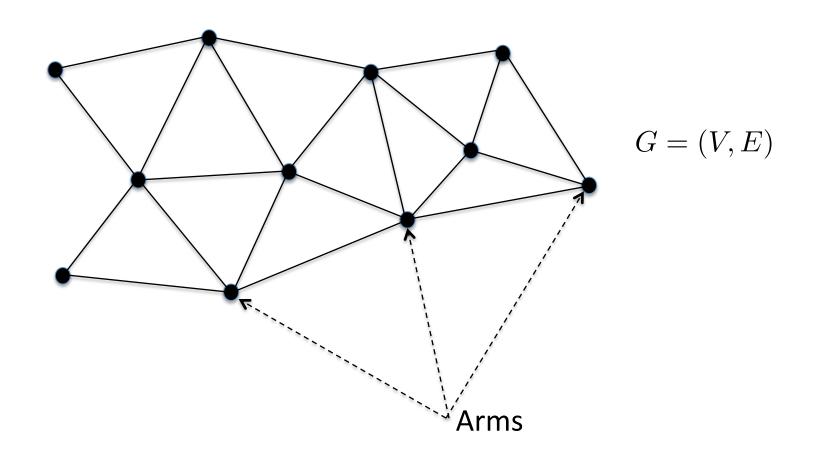
$$\Theta = \prod_{i=1}^K [a_i, b_i]$$

- **Structured bandits:** the decision maker knows that average rewards are related, i.e., that $\mu \in \Theta$ μ_2

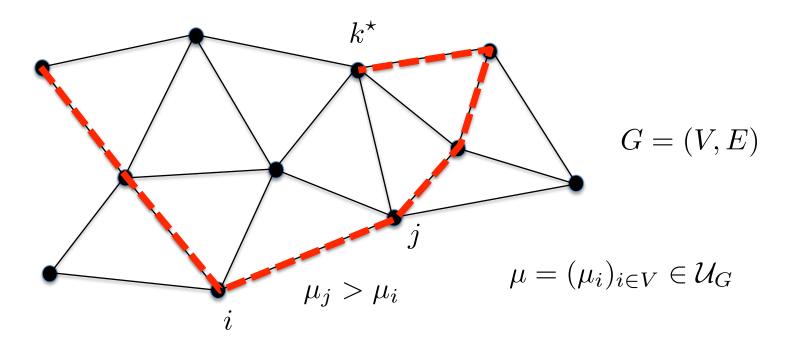
$$\Theta \neq \prod_{i=1}^{K} [a_i, b_i]$$

- The rewards observed for a given action provide side-information about the average rewards of other actions
- How can we exploit this side-information optimally?

Example 1: Graphical Unimodality

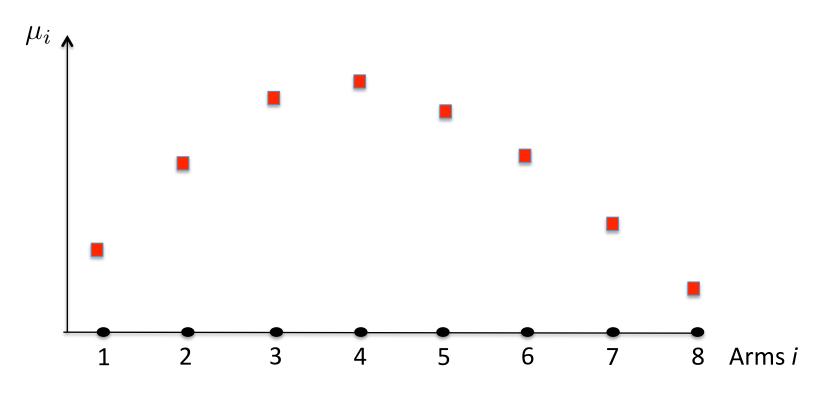


Example 1: Graphical Unimodality



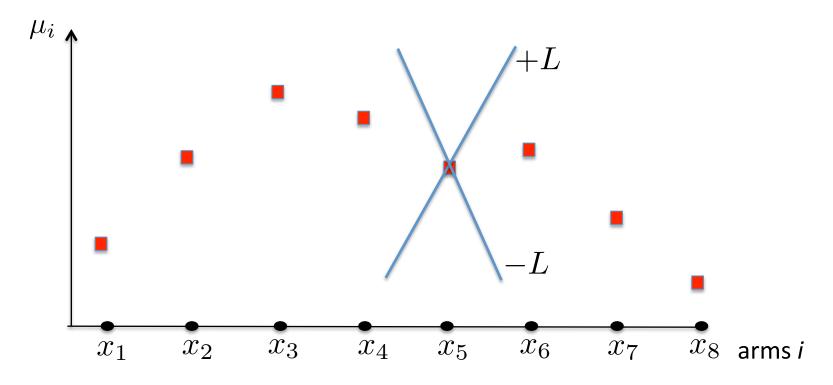
Graphical unimodality: from any vertex, there is a path with increasing rewards to the best vertex.

Example 1: Unimodality



Classical unimodality, graph = line

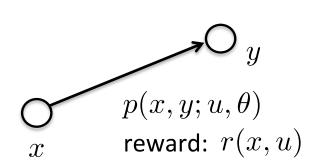
Example 2: Lipschitz



Let $x_1 < x_2 < \ldots < x_K$ denote the *positions* of the arms. We assume that: $|\mu_k - \mu_{k'}| \le L \times |x_k - x_{k'}|$.

A Markov Chain Control Perspective

Graves-Lai 1997



- Finite state space $\mathcal X$ and action spaces $\theta \in \Theta$
- Unknown parameter ⊖ : compact metric space
- Control: finite set of irreducible control laws $g:\mathcal{X} o\mathcal{U}$

$$\mu_g(\theta) = \sum_{x \in \mathcal{X}} \pi_{\theta}^g(x) r(x, g(x))$$

- Optimal control law: g^*

- Regret:
$$R^{\pi}(T) = T\mu_{g^{\star}}(\theta) - \mathbb{E}\sum_{t=1}r(X_t,g^{\pi}(X_t))$$

Regret lower bound

- KL number under policy *g*:

$$I^{g}(\theta, \lambda) = \sum_{x,y} \pi_{\theta}^{g}(x) p(x, y; g(x), \theta) \log \frac{p(x, y; g(x), \theta)}{p(x, y; g(x), \lambda)}$$

Bad parameter set:

$$B(\theta) = \{ \lambda \in \Theta : g^{\star} \text{ not opt.}, I^{g^{\star}}(\theta, \lambda) = 0 \}$$

- Lower bound: $\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$

$$c(\theta) = \inf \sum_{g \neq g^*} c_g(\mu_{g^*}(\theta) - \mu_g(\theta))$$
s.t.
$$\inf_{\lambda \in B(\theta)} \sum_{g \neq g^*} c_g I^g(\theta, \lambda) \ge 1$$

Application to Structured Bandits

- State space: set of possible rewards
- Control laws: constant mappings to the set of arms, e.g. g=k
- Transitions (i.i.d. process):

$$p(x, y; k, \theta) = \begin{cases} \theta_k & \text{if } y = 1\\ 1 - \theta_k & \text{if } y = 0 \end{cases}$$
$$I^k(\theta, \lambda) = KL(\theta_k, \lambda_k)$$

- Average rewards: g = k

$$\mu_q(\theta) = \theta_k = \mu_k$$

Regret Lower Bound

- Lower bound:
$$\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$$

$$c(\theta) = \inf_{c_k \ge 0, \forall k} c_k(\mu_{k^{\star}} - \mu_k)$$
 s.t. $\inf_{\lambda \in B(\theta)} \sum_{k \ne k^{\star}} c_k I^k(\theta, \lambda) \ge 1$
$$B(\theta) = \{\lambda \in \Theta : I^{k^{\star}}(\theta, \lambda) = 0, \mu^{\star}(\lambda) > \mu_{k^{\star}}(\lambda)\}$$

Regret Lower Bound

- Lower bound: $\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$ $c(\theta) = \inf_{c_k \ge 0, \forall k} c_k (\mu_{k^{\star}} - \mu_k)$ s.t. $\inf_{\lambda \in B(\theta)} \sum_{k \ne k^{\star}} c_k I^k(\theta, \lambda) \ge 1$

$$B(\theta) = \{ \lambda \in \Theta : I^{k^*}(\theta, \lambda) = 0, \mu^*(\lambda) > \mu_{k^*}(\lambda) \}$$

- Identifying the worst λ can be challenging
- Examples where it is explicit: unimodal, Lipschitz. In this case, the regret lower solves an LP
- Interpretation: when optimal, an algorithm plays suboptimal arm k $c_k \log(T)$ times

Asymptotically Optimal Algorithm

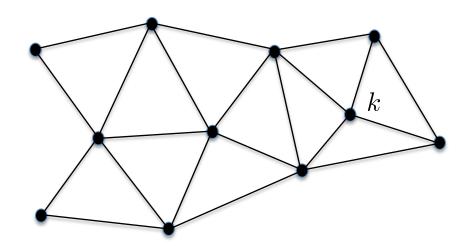
- Graves-Lai's algorithm
 - Uses the doubling trick
 - Needs to solve the regret lower bound problem repeatedly
 - Too complex, and inefficient for reasonable time horizons

2-A.1. Discrete Unimodal Bandits

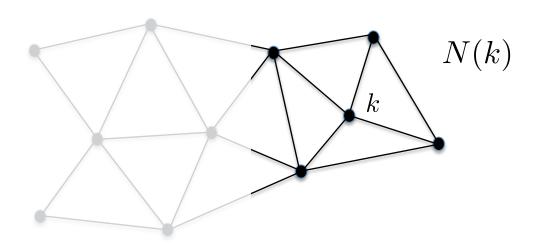
Combes, Proutiere. Unimodal Bandits: Regret Lower Bounds and Optimal Algorithms, **ICML** 2014

Combes et al. Optimal Rate Sampling in 802.11 Systems, IEEE Infocom 2014

Regret Lower Bound



Regret Lower Bound



Theorem: For any uniformly good algorithm π

$$\lim \inf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c_G(\theta) \qquad c_G(\theta) = \sum_{k \in N(k^*)} \frac{\mu^* - \mu_k(\theta)}{KL(\theta_k, \theta_{k^*})}$$

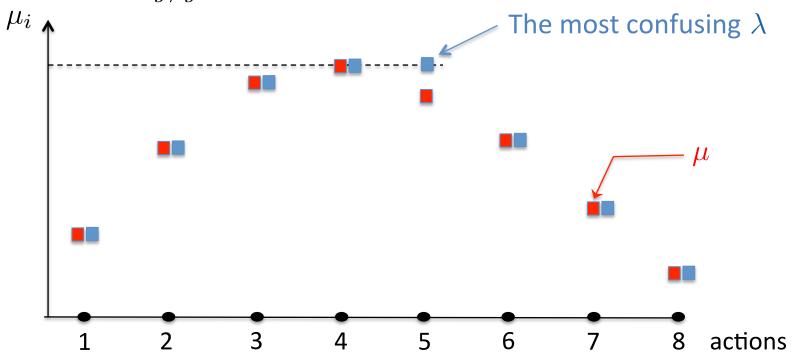
The performance limit does not depend on the size of the decision space! Structure could really help.

Proof

$$\inf \sum_{g \neq g^*} c_g(\mu_{g^*}(\theta) - \mu_g(\theta))$$

Example: classical unimodality

$$\sup_{g \neq g^{\star}} s.t. \quad \inf_{\lambda \in B(\theta)} \sum_{g \neq g^{\star}} c_g I^g(\theta, \lambda) \ge 1$$



Optimal Action Sampling

- Empirical average reward: $\hat{\mu}_k(n) = \frac{1}{t_k(n)} \sum_{s=1}^{\iota_k(n)} X_k(s)$
- Leader at time n: $L(n) \in \arg \max_{k} \hat{\mu}_k(n)$
- Number of times k has been the leader: $l_k(n) = \sum_{s=1}^n 1_{L(s)=k}$
- Index of k: $b_k(n) = \max \{q \in [0,1] : t_k(n)KL(\hat{\mu}_k(n),q) \le \log(l_{L(n)}(n)) + c\log\log(l_{L(n)}(n))\}$

Optimal Action Sampling

Algorithm – Optimal Action Sampling (OAS)

For n = 1, ..., K, select action k(n) = n

For $n \ge K + 1$, select action k(n):

$$k(n) = \begin{cases} L(n) & \text{if } (l_{L(n)}(n) - 1)/(\gamma + 1) \in \mathbb{N}, \\ \arg \max_{k \in N(L(n))} b_k(n) & \text{otherwise.} \end{cases}$$

Theorem: For any
$$\mu \in \mathcal{U}_G$$
, $\lim \sup_{T \to \infty} \frac{R^{OAS}(T)}{\log(T)} \le c_G(\theta)$.

Proof

$$R^{OAS}(T) \le \sum_{k \ne k^*} \mathbb{E}[l_k(T)]$$

+
$$\sum_{k \in N(k^*)} (\mu^* - \mu_k(\theta)) \mathbb{E}[\sum_{t=1}^I 1_{L(t)=k^*,k(t)=k}]$$

First term $\leq O(\log \log(T))$

Second term $\leq (1+\epsilon)c(\theta)\log(T) + O(\log\log(T))$

Proof ingredients

- 1. Decomposition of the set of events
- 2. Deviation bounds (refined concentration inequalities), e.g.

Lemma. $\{Z_t\}_{t\in\mathbb{Z}}$ independent random variables in [0,B]. $\mathcal{F}_n = \sigma(\{Z_t\}_{t\leq n}), \ \mathcal{F} = (\mathcal{F}_n)_{n\in\mathbb{Z}}.$ Let $s\in\mathbb{N}, \ n_0\in\mathbb{Z}$ and $T\geq n_0.$ $S_n = \sum_{t=n_0}^n B_t(Z_t - \mathbb{E}[Z_t]),$ where $B_t\in\{0,1\}$ is previsible. $t_n = \sum_{t=n_0}^n B_t. \ \phi\in\{n_0,\ldots,T+1\}$ a \mathcal{F} -stopping time with: either $t_{\phi}\geq s$ or $\phi=T+1.$ Then:

$$\mathbb{P}[S_{\phi} \ge t_{\phi}\delta , \ \phi \le T] \le \exp(-\frac{2s\delta^2}{B^2}).$$

Non-stationary environments

- Average rewards may evolve over time: $\theta(t)$
- Best decision at time t: $k^*(t)$
- Goal: track the best decision
- Regret:

$$R^{\pi}(T) = \sum_{t=1}^{T} (\mu_{k^{\star}(t)}(t) - \mu_{k^{\pi}(t)}(t))$$

- Sub-linear regret cannot be achieved (Garivier-Moulines 2011)
- Assumptions: $\theta(t)$ σ -Lipschitz (w.r.t. time), and separation

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{n=1}^{T} \sum_{k,k' \in N(k)} 1_{|\theta_k(n) - \theta_{k'}(n)| < \Delta} \le \phi(K) \Delta$$

OAS with Sliding Window

- SW-OAS (applies OAS over a sliding window of size τ)
- Graphical unimodality holds at any time
- Parameters:

$$\tau = \sigma^{-3/4} \log(1/\sigma)/8, \quad \Delta = \sigma^{1/4} \log(1/\sigma)$$

Theorem: Under $\pi = SW-OAS$

$$\lim \sup_{T} \frac{R^{\pi}(T)}{T} \le C\phi(K)\sigma^{\frac{1}{4}}\log(1/\sigma)(1+Ko(1)), \quad \sigma \to 0^{+}$$

OAS with Sliding Window

- Analysis made complicated by the smoothness of the rewards vs. time (previous analysis by Garivier-Moulines assumes separation of rewards at any time)
- Upper bound on regret per time unit:
 - Tends to zero when the evolution of average rewards gets smoother

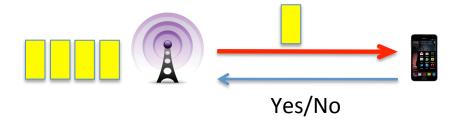
$$\sigma^{1/4}\log(1/\sigma) \to 0$$
, as $\sigma \to 0^+$

- Does not depend on the size of the decision space if $\,\phi(K) \leq C\,$

Application: Rate adaptation in 802.11

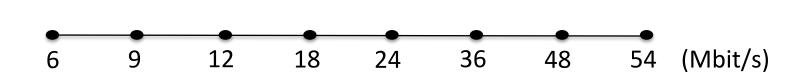
Adapting the modulation/coding scheme to the radio environment

- 802.11 a/b/g



rates
$$r_1$$
 r_2 \dots r_N Success probabilities θ_1 θ_2 \dots θ_N Throughputs μ_1 μ_2 \dots μ_N $\mu_i=r_i\theta_i$

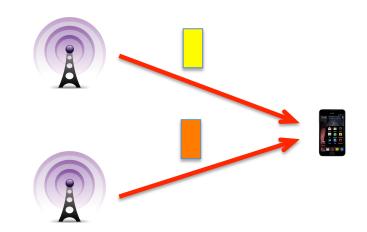
- Structure: unimodality + $heta_1> heta_2>\ldots> heta_N$



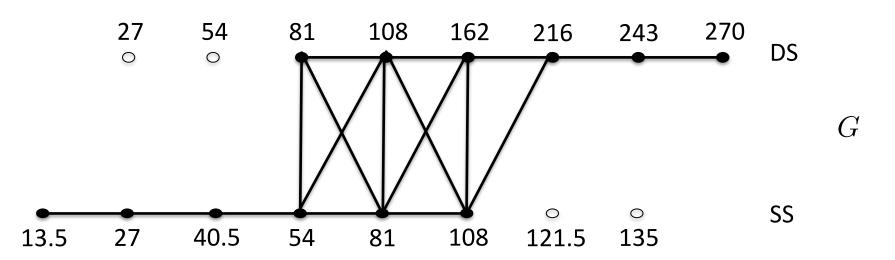
G

Rate adaptation in 802.11

802.11 n/ac MIMO
 Rate + MIMO mode
 (32 combinations in n)



- Example: two modes, single-stream (SS) or double-stream (DS)



State-of-the-art

- ARF (Auto Rate Fallback): after *n* successive successes, probe a higher rate; after two consecutive failures reduce the rate
- AARF: vary *n* dynamically depending on the speed at which the radio environment evolves
- SampleRate: based on achieved throughputs over a sliding window, explore a new rate every 10 packets
- Measurement based approaches: Map SNR to packet error rate (does not work – OFDM): RBAR, OAR, CHARM, ...
- 802.11n MIMO: MiRA, RAMAS, ...

All existing algorithms are heuristics.

Rate adaptation design: a graphically unimodal bandit with large strategy set

Optimal Rate Sampling

Algorithm – Optimal Rate Sampling (ORS)

For $n = 1, \dots, K$, select action k(n) = n

For $n \ge K + 1$, select action k(n):

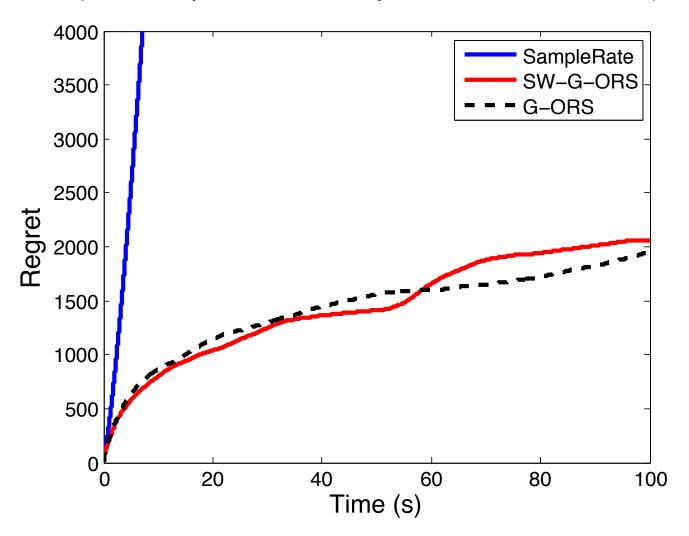
$$k(n) = \begin{cases} L(n) & \text{if } (l_{L(n)}(n) - 1)/(\gamma + 1) \in \mathbb{N}, \\ \arg \max_{k \in N(L(n))} b_k(n) & \text{otherwise.} \end{cases}$$

ORS is asymptotically optimal (minimizes regret)
Its performance does not depend on the number of possible rates!

For non-stationary environments: SW-ORS (ORS with sliding window)

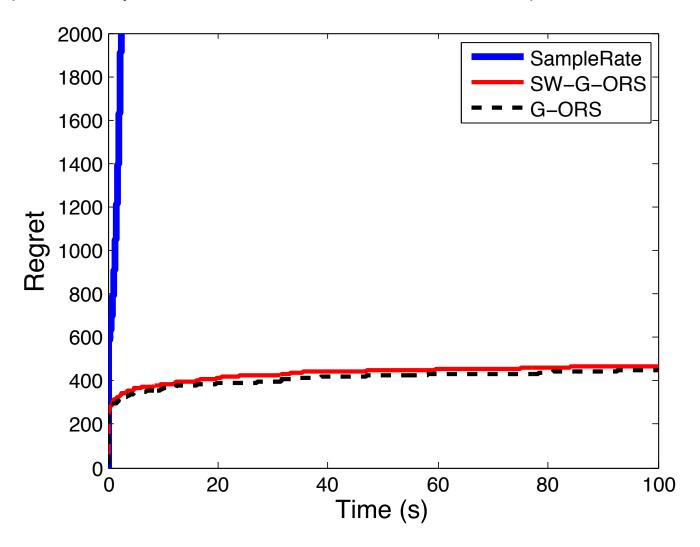
802.11g – stationary environment

GRADUAL (success prob. smoothly decreases with rate)



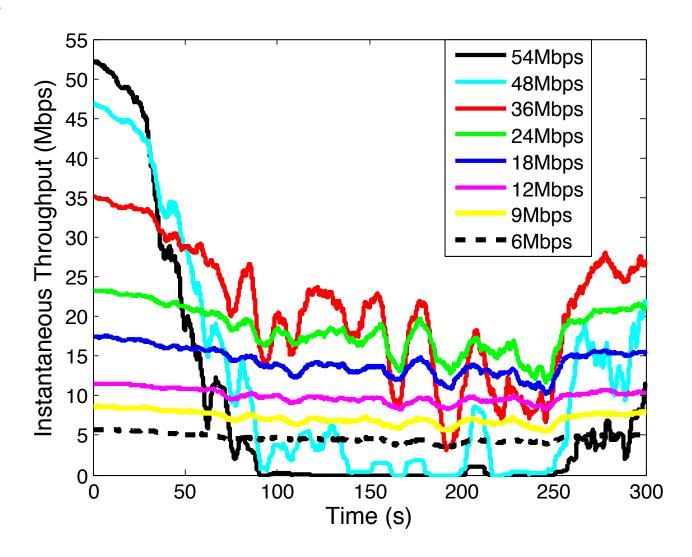
802.11g – stationary environment

STEEP (success prob. is either close to 1 or to 0)



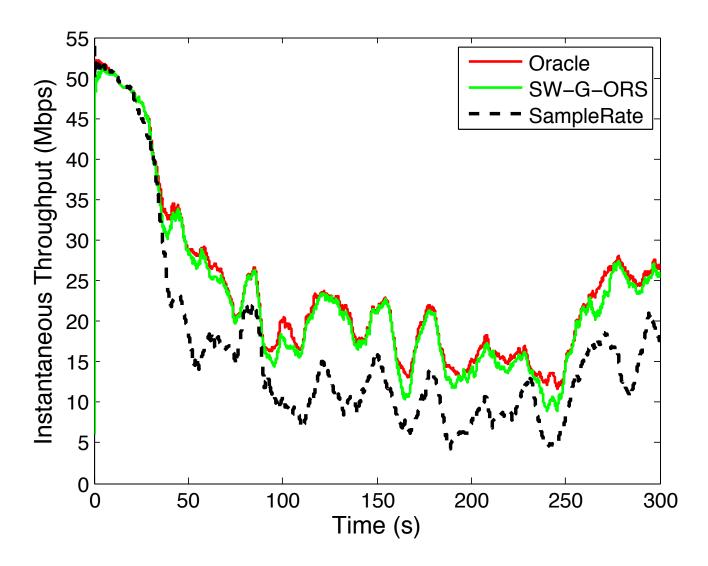
802.11g – non-stationary environment

TRACES



802.11g – non-stationary environment

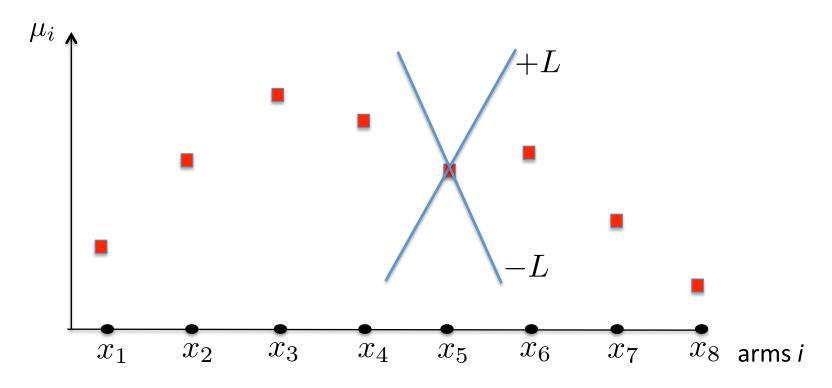
RESULTS



2-A.2. Discrete Lipschitz Bandits

Combes, Magureanu, Proutiere. Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms, **COLT** 2014

Discrete Lipschitz Bandits



Let $x_1 < x_2 < \ldots < x_K$ denote the *positions* of the arms. We assume that: $|\mu_k - \mu_{k'}| \le L \times |x_k - x_{k'}|$.

- Continuous set of actions (e.g. [0,1]): **Agrawal** 1995, **Kleinberg** 2004, **Kleinberg-Slivkins-Upfal** 2008, **Bubeck-Munos-Stolz-Szepesvári** 2008, ...

Regret lower bound

Theorem: For any uniformly good algorithm π

$$\lim \inf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge C(\theta)$$

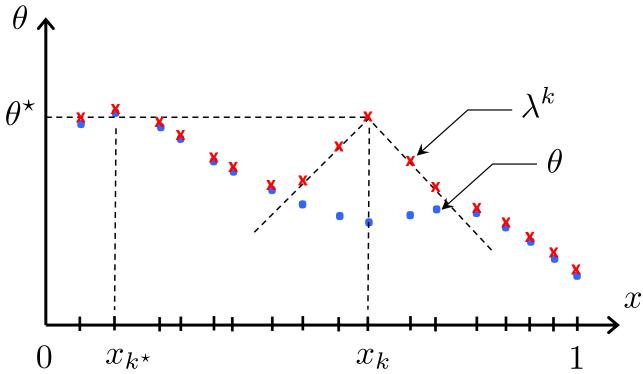
where $C(\theta)$ is the minimal value of:

$$\min_{c_k \ge 0, \forall k \in \mathcal{K}^-} \sum_{k \in \mathcal{K}^-} c_k \times (\theta^* - \theta_k)$$

s.t.
$$\forall k \in \mathcal{K}^-, \sum_{i \in \mathcal{K}} c_i I(\theta_i, \lambda_i^k) \ge 1.$$

Regret lower bound

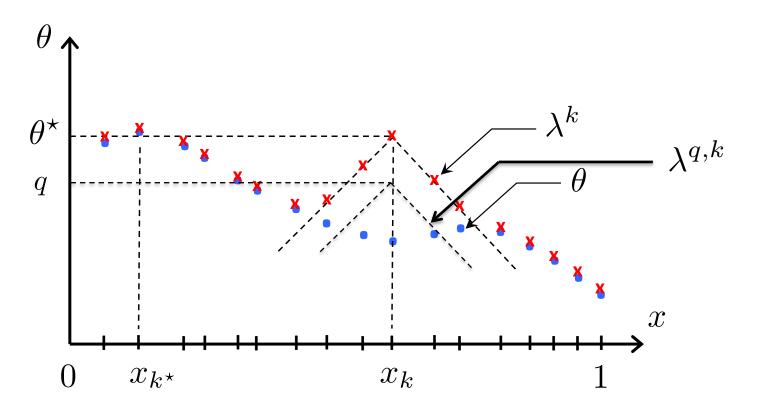
$$\min_{c_k \ge 0, \forall k \in \mathcal{K}^-} \sum_{k \in \mathcal{K}^-} c_k \times (\theta^* - \theta_k)$$
s.t. $\forall k \in \mathcal{K}^-, \sum_{i \in \mathcal{K}} c_i I(\theta_i, \lambda_i^k) \ge 1$.



Algorithms

$$b_k(n) = \sup\{q \in [\hat{\theta}_k(n), 1] :$$

$$\sum_{k'=1}^K t_{k'}(n)I^+(\hat{\theta}_{k'}(n), \lambda_{k'}^{q,k}) \le \log(n) + 3\log\log(n)\}.$$



The OSLB algorithm

- Apparently optimal arm sampling rate. Regret lower bound replacing $\, heta\,$ by $\hat{ heta}(n)\colon c_k(n)$
- Set of arms apparently under-sampled:

$$\mathcal{K}_{e}(n) = \{k \in \mathcal{K}^{-}(n) : t_{k}(n) \leq c_{k}(n) \log(n)\}$$

$$\overline{k}(n) = \arg \min_{k \in \mathcal{K}_{e}(n)} t_{k}(n)$$

$$\underline{k}(n) = \arg \min_{k} t_{k}(n)$$

Algorithm -- OSLB

Select the leader if
$$\hat{\theta}_{L(n)}(n) \geq \max_{k \neq L(n)} b_k(n)$$
 Else if $t_{\underline{k}(n)}(n) < \frac{\epsilon}{K} t_{\overline{k}(n)}(n)$, select $\underline{k}(n)$ else select $\overline{k}(n)$

A Simplified Algorithm

Algorithm -- CKL-UCB

Select the leader if it has the highest index

Else select the least explored arm with an index higher than the leader

Regret under OSLB and CKL-UCB

Theorem: For any $\theta \in \Theta_L$, under $\pi = \mathrm{OSLB}(\epsilon)$, we have:

For all $\delta > 0$, and all T,

$$R^{\pi}(T) \leq C^{\delta}(\theta)(1+\epsilon)\log(T) + C_1\log\log(T) + K^3\epsilon^{-1}\delta^{-2} + 3K\delta^{-2}$$

where $C^{\delta}(\theta) \to C(\theta)$ as $\delta \to 0^+$.

Theorem: For any $\theta \in \Theta_L$, under $\pi = \text{CKL-UCB}$, we have:

$$\lim \sup_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \le C'(\theta),$$

where $C'(\theta)$ is the minimal value of an optimization problem "close" to that providing the regret lower bound.

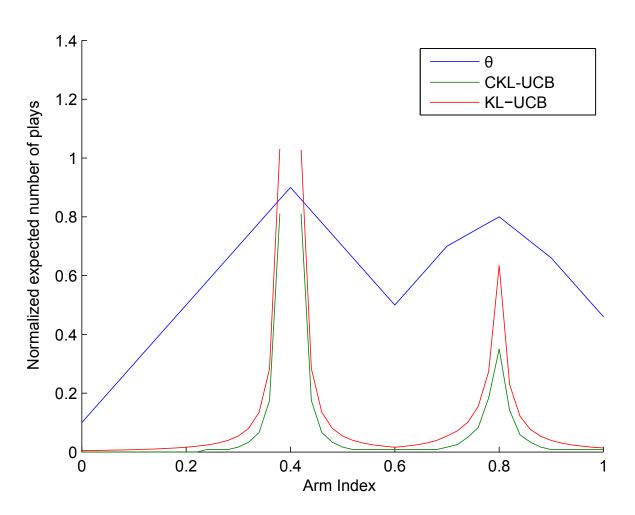
Proof ingredients

A concentration inequality for the sum of KL divergences:

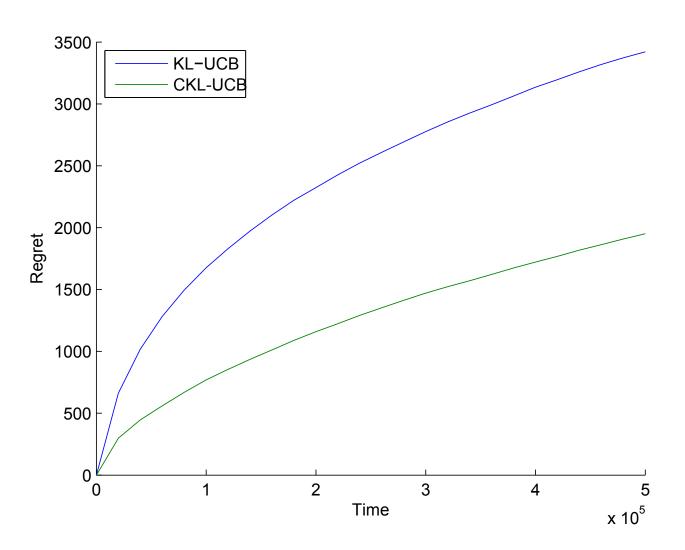
$$\mathbb{P}\left[\sum_{k=1}^{K} t_k(n) I^+(\hat{\theta}_k(n), \theta_k) \ge \delta\right] \le e^{-\delta} \left(\frac{\lceil \delta \log(n) \rceil \delta}{K}\right)^K e^{K+1}.$$

Example

46 arms, T = 500,000



Example



Summary: Discrete Structured Bandits

- Regret lower bounds by Graves-Lai 1997: works for any structure
 - When is the solution explicit?
 - How does it scale with the dimension of the decision space?
 - When explicit, provides guidelines on the design of optimal algorithms – optimally exploiting the known structure
- Simple and efficient algorithm: Unimodal, and Lipschitz
- Other structures? Linear, Convex?
- Thompson Sampling
 - Is it always asymptotically optimal?
 - How to sample for the posterior?
- Complexity vs. Performance?

2-B. Infinite Bandits

Bonald, Proutiere. Two-Target Algorithm for Infinite-Armed Bandits, **NIPS** 2013

Actions and rewards

- An infinite number of Bernoulli arms
- Decision in each round: take a new arm, or play arms previously selected
- Bayesian setting: the expected reward θ_k of the k-th selected arm follows a *known* distribution

$$F(u) = \mathbb{P}[\theta_k > u]$$

$$F(u) \sim \alpha (1 - u)^{\beta}, \quad \text{as } u \to 1 - u$$

- Regret:
$$R(T) = T - \mathbb{E}[\sum_{t=1}^{T} X_t]$$

More like a stopping time problem ...

- **Mallows-Robbins** 1964, **Herschkorn-Pekoes-Ross** 1996: no-regret policies
- **Berry-Chen-Zame-Heat-Shepp** 1997: uniformly distributed parameter, policy with regret 2√T, conjectured to be optimal

1-failure policy: keep the first arm with more than VT successive 1's

rewards	110	10	11110	11111110101011100
arm	1	2	3	4

- **Mallows-Robbins** 1964, **Herschkorn-Pekoes-Ross** 1996: no-regret policies
- **Berry-Chen-Zame-Heat-Shepp** 1997: uniformly distributed parameter, policy with regret 2√T, conjectured to be optimal

1-failure policy: keep the first arm with more than VT successive 1's

1-failure policies are actually sub-optimal ...

- Wang-Audibert-Munos 2013: More general parameter distribution, regret scaling as $T^{\beta/(\beta+1)}$ up to log factors.

Policy: select X arms and run UCB ...

Not a stopping rule. The number of arms tested does not depend on the realizations of the rewards.

Regret lower bound

Theorem: For any algorithm π knowing the time horizon,

$$\lim \inf_{T \to \infty} \frac{R^{\pi}(T)}{T^{\frac{\beta}{\beta+1}}} \ge \left(\frac{\beta+1}{\alpha}\right)^{\frac{1}{\beta+1}}$$

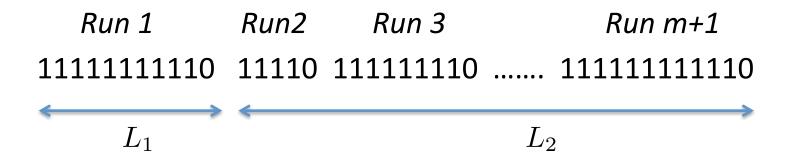
Conjecture: When the time horizon is unknown,

$$\lim \inf_{T \to \infty} \frac{R^{\pi}(T)}{T^{\frac{\beta}{\beta+1}}} \ge \frac{\beta+1}{\beta} \left(\frac{\beta}{\alpha}\right)^{\frac{1}{\beta+1}}$$

Example: parameter unif. distributed, $\sqrt{2T}$, $2\sqrt{T}$.

Two-target algorithms

Exploration of arm *k*:



If $L_1 < \ell_1$, explore a new arm Else if $L_2 < \ell_2$, explore a new arm else keep it forever

Two-target algorithms

Theorem: Select
$$\ell_1 = \left\lfloor \left(\frac{\alpha n}{\beta + 1} \right)^{\frac{1}{\beta + 2}} \right\rfloor, \quad \ell_2 = \left\lfloor m \left(\frac{\alpha n}{\beta + 1} \right)^{\frac{1}{\beta + 1}} \right\rfloor.$$

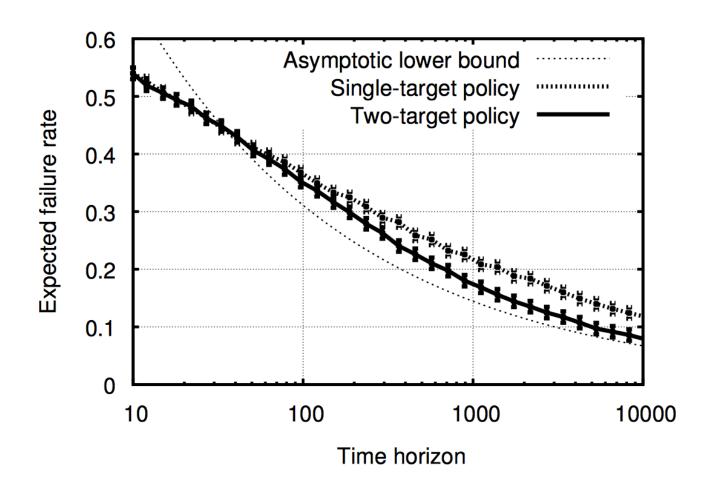
$$\lim \sup_{T \to \infty} \frac{R^{\pi}(T)}{T^{\frac{\beta}{\beta+1}}} \le \left(\frac{\beta+1}{\alpha}\right)^{\frac{1}{\beta+1}} \left(1 + O(\frac{1}{m})\right).$$

Example: parameters for unif. distribution,

$$\ell_1 \sim (n/2)^{1/3}, \quad \ell_2 \sim m\sqrt{n/2}.$$

Numerical Example

- Beta(1,2) mean reward distribution
- Expected failure rate = mean regret per round



Summary: Infinite Bandits

- Regret lower bound and optimal algorithms when the support of the reward distribution is 1, and the time horizon is known
- What about unknown time horizon?
- What if the support of the reward distribution does not include 1?
- What if the reward distribution is only partially known?

2-C. Continuous Structured Bandits

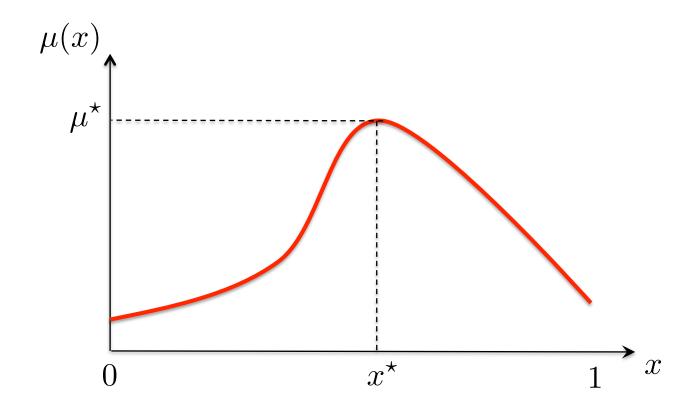
Continuous Structured Bandits

- Set of arms: [0, 1]
- Bernoulli reward for arm x of mean $\mu(x)$
- Reward realizations: $(X_n(x), n \ge 1)$ i.i.d. over time, independent over arms
- Algorithm π : selects arm $x^{\pi}(n)$ in round n
- Bandit feedback: $X_n(x^{\pi}(n))$
- Regret: $R^\pi(T) = T\mu^\star \sum_{n=1}^T \mu(x^\pi(n))$ $\mu^\star = \sup_{x \in [0,1]} \mu(x) = \mu(x^\star)$
- Structure: $x\mapsto \mu(x)$ is unimodal, linear, concave, Lipschitz, ...

2-C.1. Continuous Unimodal Bandits

Combes, Proutiere. Unimodal Bandits without Smoothness, arxiv 2014

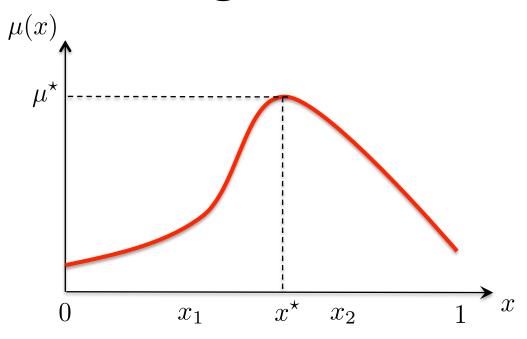
Continuous Unimodal Bandit



The mapping $x\mapsto \mu(x)$ is unimodal.

Golden Section Algorithm

Kiefer 1953

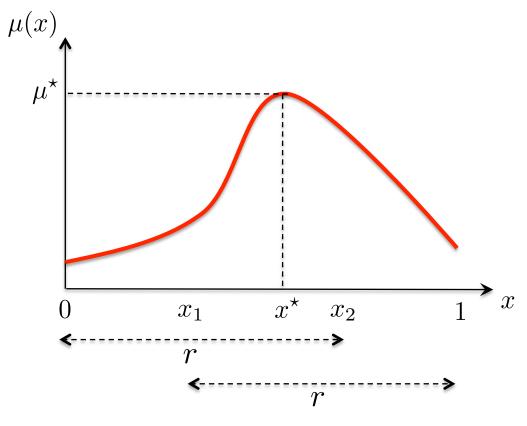


- **Deterministic setting**
- Evaluate the function in points x_1, x_2
- If $\mu(x_1) < \mu(x_2)$, keep $[x_1, 1]$, else keep $[0, x_2]$
- Design choices: (i) the ratio of the lengths of the old and new new intervals is always r and (ii) we need to evaluate the function once in each step

62

Golden Section Algorithm

Kiefer 1953



$$\frac{1}{r} = \frac{r}{1-r} \Longrightarrow r = \frac{-1+\sqrt{5}}{2} \approx 0.618$$

Stochastic Setting – Related Work

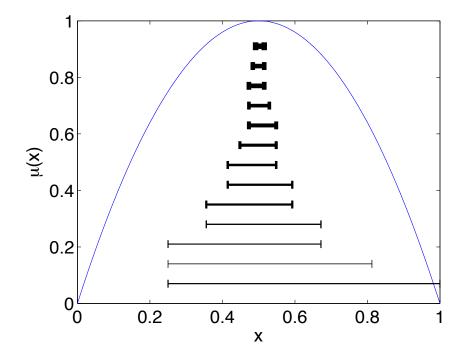
Smoothness assumption:

$$|\mu(x) - \mu(x^*)| \stackrel{x \to x^*}{\sim} C|x - x^*|^{\alpha}, \quad \alpha > 0$$

- Regret lower bound (Dani et al. 2008 linear): $\Omega(\sqrt{T})$
- Existing approaches yielding a regret $\tilde{O}(\sqrt{T})$
 - Kleinberg 2004: discretization with step $(\log(T)/\sqrt{T})^{1/\alpha}$
 - Coppe 2009: stochastic gradient, works for $\alpha \geq 2$ only
 - Yu-Mannor 2011: stochastic version of the golden section algorithm, assume the knowledge of α, C
- Without any knowledge on the function smoothness: interval trimming algorithm yielding a regret $\tilde{O}(\sqrt{T})$, Combes-Proutiere 2014

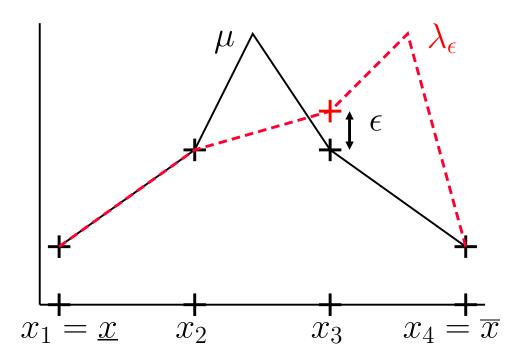
Interval Trimming

- Idea: construct a sequence of intervals $I^T\subset\ldots\subset I^0=[0,1]$ with $x^\star\in\cap_{t=0}^TI^t$ with high probability
- Step t: start with $I^t = [\underline{x}, \overline{x}]$
 - Sample the function at K points $\underline{x} \leq x_1 \leq \ldots \leq x_K \leq \overline{x}$ until enough information is gathered to eliminate either the left or right part of I^t



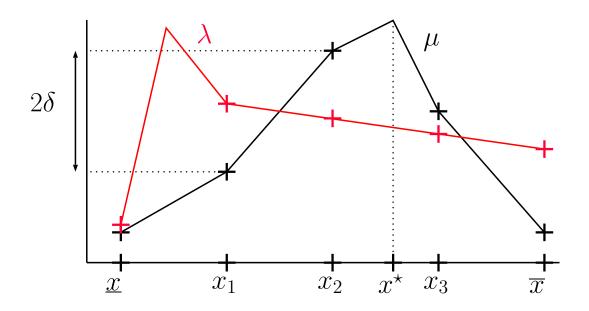
The Failure of Golden Section Algorithm -- Unknown Smoothness

- We need to sample at least 3 arms in the interior of the interval to be trimmed to guarantee that $x^\star \in \cap_{t=0}^T I^t$ with high probability



Optimal Interval Trimming

- Sample 3 points in the interior of the interval $x_1 < x_2 < x_3$
- If $x^\star > x_2$, and $\mu(x_1) < \mu(x_2)$ -- remove $[\underline{x}, x_1]$
- If $x^\star < x_1$, and $\mu(x_3) < \mu(x_2)$ -- remove $[x_3, \overline{x}]$
- Sample long enough until $\,\hat{\mu}(x_2) \hat{\mu}(x_1)\,$ or $\,\hat{\mu}(x_2) \hat{\mu}(x_3)\,$ is large enough



Optimal Interval Trimming

Location test:

$$KL^*(\mu_1, \mu_2) = 1_{\mu_1 < \mu_2} \left[KL(\mu_1, \frac{\mu_1 + \mu_2}{2}) + KL(\mu_2, \frac{\mu_1 + \mu_2}{2}) \right]$$

- Sample x_1, x_2, x_3 in a round robin fashion
- Stop when there is $m \in \{1, 3\}$ such that:

$$\underline{t}(n)KL^{\star}(\hat{\mu}_m(n), \hat{\mu}_2(n)) \ge \log(T)$$

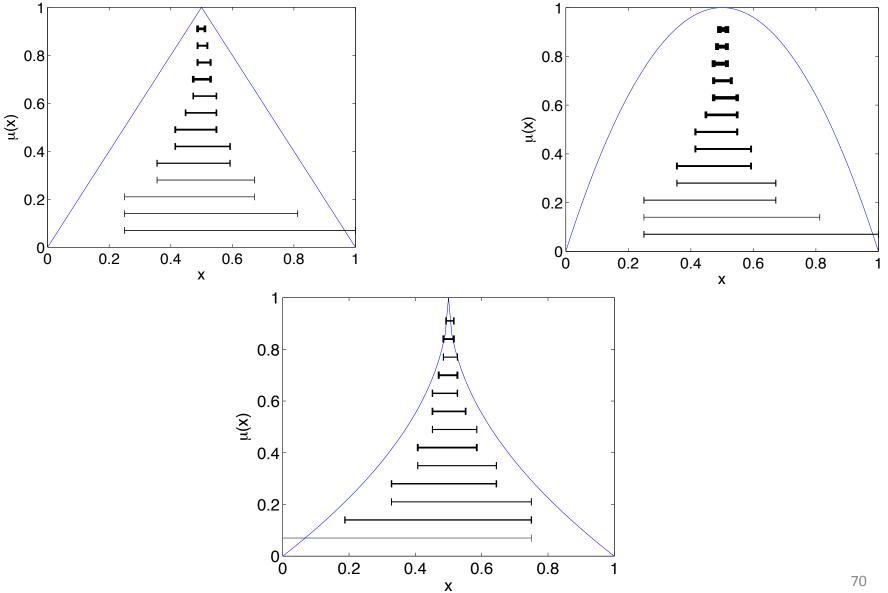
- If m=1, remove $[\underline{x},x_1]$
- If m=3, remove $[x_3,\overline{x}]$

Performance

Theorem: Let $\delta = \mu(x_2) - \mu(x_1)$ if $x^* \geq x_2$, and $\delta = \mu(x_2) - \mu(x_3)$ otherwise. The interval trimming procedure has length $O(\delta^{-2}\log(T))$ and risk $O(T^{-1})$.

Theorem: Assume $|\mu(x) - \mu(x^\star)| \stackrel{x \to x^\star}{\sim} C|x - x^\star|^\alpha, \quad \alpha > 0$. Then the proposed algorithm has regret $O(\sqrt{T\log(T)})$.

Examples



2-C.2. Continuous Lipschitz Bandits

- Continuous set of actions (e.g. [0,1]): Agrawal 1995,
 Kleinberg 2004, Kleinberg-Slivkins-Upfal 2008,
 Bubeck-Munos-Stolz-Szepesvári 2008, ...
- For continuous bandits, algorithms should
 - 1. Adapt the subset of arms to sample from
 - Optimally exploit the Lipschitz structure to select the arm based on *all* past observations
- Existing algorithms perform 1, but not 2. (for 2., simple UCB-like index are used ...)
- Alternative approach: optimal algorithm for discrete bandits, and then optimal discretization of the set of arms

Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008

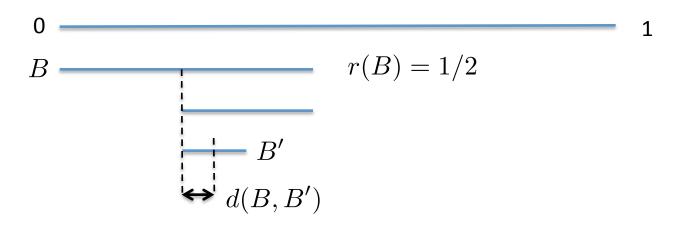
- Maintains a set of active balls: \mathcal{A}_t

$$\operatorname{conf}_t(B) = 4\sqrt{\frac{\log(T)}{1 + n_t(B)}}$$

$$dom_t(B) = B \setminus \bigcup_{B' \in \mathcal{A}_t : r(B') < r(B)} B'$$

Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008

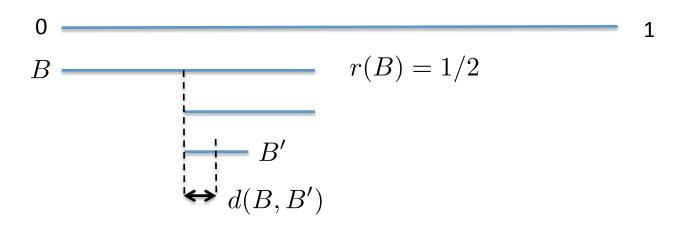


- Index of balls:
$$I_t(B) = r(B) + \min_{B' \in \mathcal{A}_t} (U_t(B') + d(B, B'))$$

$$U_t(B) = \hat{\mu}_t(B) + r(B) + \operatorname{conf}_t(B)$$

Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008



- Algorithm:
 - Select a ball B with highest index and an arm y in B
 - If $conf_t(B) \le r(B)$, activate the ball centered at y with radius r(B)/2
- Crude index, and sub-optimal structure exploitation

Optimal Discretized Algorithm

$$|\mu(x) - \mu(x^*)| \stackrel{x \to x^*}{\sim} C|x - x^*|^{\alpha}, \quad \alpha > 0$$

Algorithm

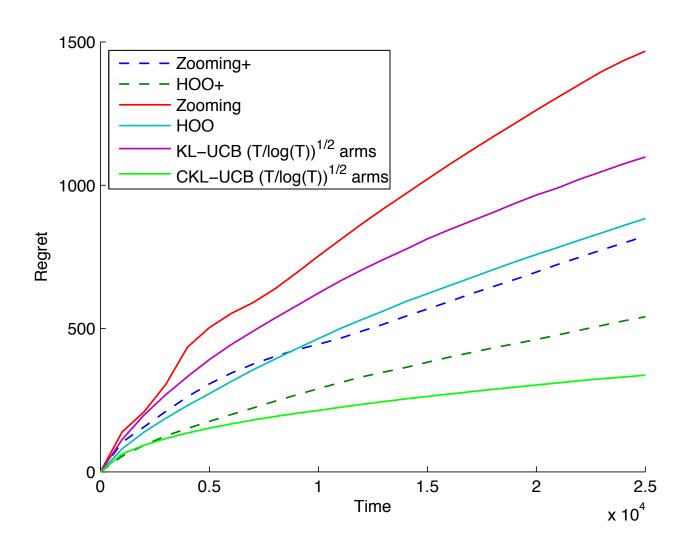
- 1. Discretization of the set of arms: step size $(\log(T)/\sqrt{T})^{1/\alpha}$
- 2. Apply discrete bandit algorithms

The above algorithm is order-optimal, as (discretization +KL-UCB), HOO algorithms, regret $\tilde{O}(T^{1/2})$

The zooming algorithm does not take the smoothness into account – in general sub-optimal, regret $\tilde{O}(T^{2/3})$

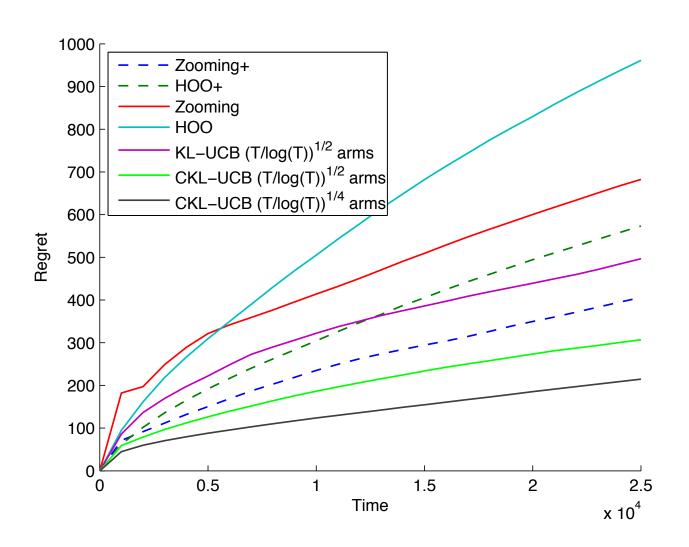
Example: Continuous set of arms

Triangular reward function



Example: Continuous set of arms

Quadratic reward function



Summary: Continuous Bandits

- State-of-the-art algorithms apply an appropriate discretization of the set of arms, and optimally exploit the structure
- Discretization: depends on the smoothness of the expected reward function
- Without smoothness: optimal location test + interval trimming approach
- No problem-specific regret lower bound

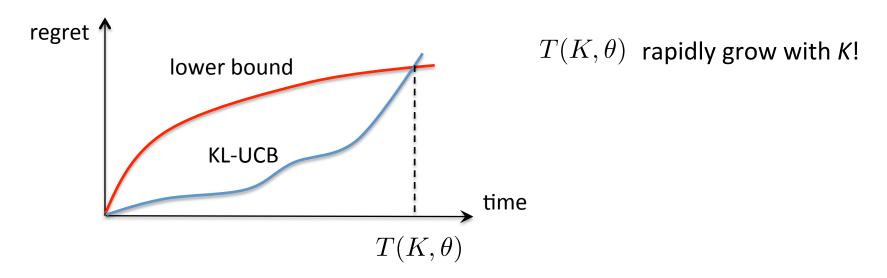
2-D. Conclusions and Open Problems

Conclusions: Stochastic Bandits

- Regret: the right performance metrics when dealing with uncertain and time-varying (non-stationary) environment
 - Tracking the best decision with minimum exploration cost
 - Many applications
- A well developed theory (essentially in the control and stat. communities, from the 70's to the late 90's)
- Further insights and new applications (ML community)
- Many open questions ...

Anytime Regret Guarantees

- Classical unstructured discrete bandits: the asymptotic lower bound is not tight for small time horizons



- Optimality for small time horizon?
- Preliminary result: Guha 2014 (COLT), Thompson sampling is 2-competitive for very specific problems

Discrete Structured Bandits

- Simple and yet asymptotically optimal algorithm for generic structure?
- Graves-Lai lower bound indicates the numbers of times sub-optimal arms should be selected
 - These numbers solve a complex optimization problem
 - ... that we need to solve to get asymptotic optimality
 - What about the trade-off between complexity and regret?
- How does the lower bound scale with the number of arms?
- Example: combinatorial bandits (e.g. routing problems)
- Performance of Thompson sampling?

Continuous Structured Bandits

- Problem specific lower bounds?
- How to optimally exploit the structure? Linear, convex, and other structure?
- The optimal discretization depends on the structure and the smoothness of the expected reward function: is there an algorithm learning the structure and the smoothness?

Bibliography

- Graves and Lai. Asymptotically efficient adaptive choice of control laws in controlled Markov chains, 1997
- Garivier and Moulines. On Upper-Confidence Bound Policies for Nonstationary Bandit Problems, 2011
- Agrawal. The Continuum-Armed Bandit Problem, 1995
- Kleinberg. Nearly tight bounds for the continuum-armed bandit problem, 2004
- Kleinberg, Slivkins, and Upfal, Multi-armed bandits in metric spaces,
 2008
- Bubeck, Munos, Stoltz, Szepesvári. X-Armed Bandits, 2011
- Mallows, Robbins. Some Problems of Optimal Sampling Strategy, 1964
- Berry, Chen, Zame, Heath, and Shepp, Bandit problems with infinitely many arms, 1997
- Wang, Audibert, and Munos. Algorithms for infinitely many-armed bandits, 2008

Bibliography

- Kiefer. Sequential minimax search for a maximum, 1953
- Guha and Munagala. Stochastic Regret Minimization via Thompson Sampling, 2014

Thanks!

- Richard Combes: https://dl.dropboxusercontent.com/u/19365883/site/ index.html

Alexandre Proutiere: http://people.kth.se/~alepro/