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2-A. Discrete Structured Bandits



Discrete Structured Bandits

K arms
Reward distributions parametrized by 6 = (64, ...,0k)
Average reward of arm k: p = px(6)

Most often, reward distributions are taken from a single
parameter exponential family (e.g. Bernoulli, 0, = )

K can be very large — yielding a prohibitive regret if arms
are independent, i.e., ©(K log(T))

Structure matters and has to be exploited!

Notation: p*(0) = max pi(0) = = (0)



Discrete Structured Bandits

- Unstructured bandits: average rewards are not related

= (1, 1K) € O H2 o
K )
@ = H[aubz]
=l > H1

- Structured bandits: the decision maker knows that average
rewards are related, i.e.,that u € ©  p2,

S

K
O 7é H[ai7 b’t]
1=1

> H1
- The rewards observed for a given action provide side-information
about the average rewards of other actions

- How can we exploit this side-information optimally?



Example 1: Graphical Unimodality

' Arms



Example 1: Graphical Unimodality

k*

G=(V,F)

= (i) e U
1 > p=(Hi)iev G

1

Graphical unimodality: from any vertex, there is a path with
increasing rewards to the best vertex.



Example 1: Unimodality
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Classical unimodality, graph = line



Example 2: Lipschitz
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Let 1 < 9 < ... < xi denote the positions of the arms.
We assume that: |[ur — pg | < L X |x)p — 2|



A Markov Chain Control Perspective
Graves-Lai 1997

- Finite state space X’ and

O Y action spaces 6 € ©
p(z,y;u,0) - Unknown parameter

T reward: 7(Z,u) © : compact metric space

- Control: finite set of irreducible control laws ¢ : X — U

= 7(@)r(z,9(z))

reX
- Optimal control law: ¢~ -
- Regret: R™(T) =Ty (0) —E» r(Xy,g"
t=1



Regret lower bound

- KL number under policy g:

I9(6,\) Z’T(’e p(x,y; g(x),0)log p(:l:,y,;](

- Bad parameter set:

B(#) = {\ € ©: g* not opt., I9 (6,\) =0}

- Lower bound: hmmfR (T)
T — 00 log(T)

0) = inf > cq(pg: (0) — 11g(0))

g7g*

t. f 9(0
i ,\enfls(e) 2 cl?(0.0) 2
g#g*

> c(0)



Application to Structured Bandits

State space: set of possible rewards

Control laws: constant mappings to the set of arms, e.g.
g==k

Transitions (i.i.d. process):

0 ity=1

I%(0,\) = KL(0), \1,)

Average rewards: g = k

pg(0) = O = pu



Regret Lower Bound

- Lower bound: liminfR (T)

mint e = <O

—  inf .
c(0) = inf cx(pe — k)

t. inf "6, )) > 1
gy 2 0N 2

BO)={\eO:TF,))=0,u"(\) > pe(N)}



Regret Lower Bound

. . .R™(T)
: >
Lower bound hT”ilO%f og(T) = c(0)
—  inf .
c(0) = inf cx(pe — k)
t. inf "(6,\) > 1
> Ael%(e)zck (9,4) =

.

BO)={\eO:TF,))=0,u"(\) > pe(N)}

ldentifying the worst A can be challenging

Examples where it is explicit: unimodal, Lipschitz. In this
case, the regret lower solves an LP

Interpretation: when optimal, an algorithm plays sub-
optimal arm k ¢ log(T") times



Asymptotically Optimal Algorithm

- Graves-Lai’s algorithm
- Uses the doubling trick
- Needs to solve the regret lower bound problem repeatedly
- Too complex, and inefficient for reasonable time horizons



2-A.1. Discrete Unimodal Bandits

Combes, Proutiere. Unimodal Bandits: Regret Lower Bounds
and Optimal Algorithms, ICML 2014

Combes et al. Optimal Rate Sampling in 802.11 Systems, IEEE
Infocom 2014



Regret Lower Bound



Regret Lower Bound

Theorem: For any uniformly good algorithm =
R™ (T
lim inf (T)

5 p* — pg(6)
A ogm) = 60) celd) = KI0e

The performance limit does not depend on the size of
the decision space! Structure could really help.



97#9* Example: classical unimodality
s.t. inf 19(0.\) > 1
AeB(0) Z cg1%(0,2)
97#g*
i p The most confusing A
_______________________________ ..______._/
- »
" u S "
(T
T
o
@ @ @ — L —@ @ @ @
1 2 3 4 5 6 7 8 actions

19



Optimal Action Sampling

tk(n)

Empirical average reward: jix(n

Leader at time n: L(n) € arg max fi(n)

Number of times k has been the leader: I, (n Z 11, (s)=k

Index of k: bi.(n) =max{q € |0,1] : tx(n)KL(iix(n),q)
< log(lm)(n)) + cloglog(lrmy(n)) }



Optimal Action Sampling

Algorithm — Optimal Action Sampling (OAS)

For n=1,..., K, select action k(n) =n
For n > K + 1, select action k(n):
L(n) if (I () — 1)/(y + 1) €N,
k(n) =94 arg max bi(n) otherwise.
kEN(L(n))

OAS
T
Theorem: For any u € Ug, lim sup R77(T)
T — o0 lOg(T)

S Cg(e).



Proof

ROA(T) < ) | E[lk(T)]
k#k*

T
4 Z (u* — s )E[ZlL(t):k*,k(t):k]
t=1

kEN (k*)

First term < O(loglog(T))

Second term < (1 + €)c(0) log(T) + O(loglog(T))



Proof ingredients

1. Decomposition of the set of events

2. Deviation bounds (refined concentration inequalities), e.g.

Lemma. {Z;};cz independent random variables in [0, B].
Frn=0{Zt}t<n), F = (Fn)nez. Let s € N, ng € Z and T > ny.
Sn = > 1, B:(Zs — E[Z4]), where B; € {0,1} is previsible.
tn =Y 4—p, Be- & € {no,..., T + 1} a F-stopping time with:
either t, > s or ¢ =T + 1. Then:

2 2
PlSy > 130, ¢ < T| < exp(— ;i )-




Non-stationary environments

- Average rewards may evolve over time: 0(t)
- Best decision at time t: k*(t)

- Goal: track the best decision

- Regret: -
Z fas (1) (8) — pogem (1) (£))

t=1

- Sub-linear regret cannot be achieved (Garivier-Moulines 2011)
- Assumptions: 0(¢ ) o-Lipschitz (w.r.t. time), and separation

lim sup —; Z Z Lo, (n) =0, (n)|<a < G(K)A

T—oo 1" 1= 1 k,k'€N (k)



OAS with Sliding Window

- SW-OAS (applies OAS over a sliding window of size 1)
- Graphical unimodality holds at any time
- Parameters:

r=0"3*log(1/0)/8, A =c'*log(1/0)

Theorem: Under m =SW-0AS
R™(T)

lim sup < CH(K)oilog(l/o)(1+ Ko(l)), o— 0T

T



OAS with Sliding Window

- Analysis made complicated by the smoothness of the rewards
vs. time (previous analysis by Garivier-Moulines assumes
separation of rewards at any time)

- Upper bound on regret per time unit:

- Tends to zero when the evolution of average rewards gets smoother
ocl/*log(l/o) =0, aso — 07T

- Does not depend on the size of the decision space if ¢(K) < (C



Application: Rate adaptation in 802.11

Adapting the modulation/coding scheme to the radio environment

- 802.11a/b/g =

Yes/No
rates rn r2 ... TN
Success probabilites 61 62 ... 0Oxn
Throughputs 1 2 ... UN L; = 1;0;

- Structure: unimodality + 01 > 02 > ... > 0N
G

o— @ L L @ @ L 2 —Q
6

9 12 18 24 36 48 54 (Mbit/s)



Rate adaptation in 802.11

- 802.11 n/ac MIMO i |
Rate + MIMO mode \
(32 combinations in n) — D/’

A

- Example: two modes, single-stream (SS) or double-stream (DS)

27 54 31 108 162 216 243 270

o o PN °o DS

® @ O

@ ©)
13.5 27 40.5 54 81 108 121.5 135

SS



State-of-the-art

- ARF (Auto Rate Fallback): after n successive successes, probe a
higher rate; after two consecutive failures reduce the rate

- AARF: vary n dynamically depending on the speed at which the
radio environment evolves

- SampleRate: based on achieved throughputs over a sliding
window, explore a new rate every 10 packets

- Measurement based approaches: Map SNR to packet error rate
(does not work — OFDM): RBAR, OAR, CHARM, ...

- 802.11n MIMO: MiRA, RAMAS, ...

All existing algorithms are heuristics.

Rate adaptation design: a graphically unimodal bandit with large
strategy set



Optimal Rate Sampling

Algorithm — Optimal Rate Sampling (ORS)

For n=1,..., K, select action k(n) =n
For n > K + 1, select action k(n):
L(n) if (I () — 1)/(y + 1) €N,
k(n) =94 arg max bi(n) otherwise.
kEN(L(n))

ORS is asymptotically optimal (minimizes regret)
Its performance does not depend on the number of possible
rates!

For non-stationary environments: SW-ORS (ORS with sliding
window)




302.11g — stationary environment
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302.11g — stationary environment

STEEP (success prob. is either close to 1 or to 0)
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302.11g — non-stationary environment
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302.11g — non-stationary environment
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2-A.2. Discrete Lipschitz Bandits

Combes, Magureanu, Proutiere. Lipschitz Bandits: Regret
Lower Bounds and Optimal Algorithms, COLT 2014



Discrete Lipschitz Bandits

Hi A
+ L
|
|
|
. X
|

|

—L

|

L L @ — @ D S @ L
L1 ) L3 X4 L5 L6 X7 L8 armsi

Let 1 < 9 < ... < xi denote the positions of the arms.
We assume that: |[ur — pg | < L X |x)p — 2|



Related work

- Continuous set of actions (e.g. [0,1]): Agrawal 1995,
Kleinberg 2004, Kleinberg-Slivkins-Upfal 2008,
Bubeck-Munos-Stolz-Szepesvari 2008, ...



Regret lower bound

Theorem: For any uniformly good algorithm =

. Re(T)
lm i 5 T

> C(0)

where C(0) is the minimal value of:

min Z cr X (0% — 0y)

cr>0.Vkel— I

st Ve K™, Y el(8,\F) > 1.
e



Regret lower bound

min E ck X (0% — 0Ok)
cr>0,VkelkC—
kekK—

st Yk €K™, ) el (8;,AF) > 1.
1€

k
O fg- ¥ X / A
8 "1




Algorithms

b (n) ZSUP{Q € [0k(n), 1] :

k'=1
0 A
O* |--x-- S
! : TX
q """""
0 T |*

> b

n) It (0 (n), )\Z’,k) < log(n) + 3loglog(n)}.

40



The OSLB algorithm

- Apparently optimal arm sampling rate. Regret lower
bound replacing 6 by 6(n): cx(n)

Set of arms apparently under-sampled:
Ke(n) =4k e K (n):tr(n) <cr(n)log(n)}
k(n) = arg min t,(n)
k

ke (n)

n
(n) = arg mkin tr(n)

Algorithm -- OSLB

if 0 > b
:elect the leader if 01,,)(n) > k?&}f@) k(n)
se

i Loy (1) < Tt (n), select k(n)
else select k(n)




A Simplified Algorithm

Algorithm -- CKL-UCB
Select the leader if it has the highest index

Else select the least explored arm with an index higher
than the leader




Regret under OSLB and CKL-UCB

Theorem: For any § € ©; , under # = OSLB(¢), we have:
Forall 6 >0, andall 7,

R™(T) < C°(8)(1 + €)log(T) + C1loglog(T) + K3 1672 + 3K5 2

where C°(0) — C(f) as 6 — 0.

Theorem: For any 6 € ©, under m = CKL-UCB, we have:

, R”(T) ,
1 < C'(0),
m sup 3oy = ¢ O

where C’(0) is the minimal value of an optimization problem
“close” to that providing the regret lower bound.



Proof ingredients

A concentration inequality for the sum of KL divergences:

Ztk I+ Hk ek) > 5:| < P (’_510§§n)_‘5)K€K+1



Example

46 arms, T = 500,000
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Example
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Summary: Discrete Structured Bandits

- Regret lower bounds by Graves-Lai 1997: works for any
structure
- When is the solution explicit?
- How does it scale with the dimension of the decision space?

- When explicit, provides guidelines on the design of optimal
algorithms — optimally exploiting the known structure

- Simple and efficient algorithm: Unimodal, and Lipschitz
- Other structures? Linear, Convex?

- Thompson Sampling
- lIs it always asymptotically optimal?
- How to sample for the posterior?

- Complexity vs. Performance?



2-B. Infinite Bandits

Bonald, Proutiere. Two-Target Algorithm for Infinite-Armed
Bandits, NIPS 2013



Actions and rewards

- An infinite number of Bernoulli arms

- Decision in each round: take a new arm, or play arms
previously selected

- Bayesian setting: the expected reward 0y of the k-th
selected arm follows a known distribution

F(u) = Pl0x > u]

F(u) ~a(l —u)?, asu— 1—
T
- Regret: R(T -E[>_X]
t=1

- More like a stopping time problem ...



Related work

- Mallows-Robbins 1964, Herschkorn-Pekoes-Ross 1996:
no-regret policies

- Berry-Chen-Zame-Heat-Shepp 1997: uniformly
distributed parameter, policy with regret 2VT, conjectured
to be optimal

1-failure policy: keep the first arm with more than vT
successive 1's

rewards 110 10 11110 11111110101011100...
arm 1 2 3 4



Related work

- Mallows-Robbins 1964, Herschkorn-Pekoes-Ross 1996:
no-regret policies

- Berry-Chen-Zame-Heat-Shepp 1997: uniformly
distributed parameter, policy with regret 2VT, conjectured
to be optimal

1-failure policy: keep the first arm with more than vT
successive 1's

rewards 110 10 11110 11111110101011100...
arm 1 2 3 4

1-failure policies are actually sub-optimal ...



Related work

- Wang-Audibert-Munos 2013: More general parameter
distribution, regret scaling as 7%/(3*+1) up to log factors.

Policy: select X arms and run UCB ...

Not a stopping rule. The number of arms tested does not
depend on the realizations of the rewards.



Regret lower bound

Theorem: For any algorithm 7 knowing the time horizon,

zwa)2i<54y>ﬁh

lim inf

T'— o0 Tm 8

Conjecture: When the time horizon is unknown,

RWT)>6+1(B>ﬁ1

84

lim inf >
T—oo TarT B

Example: parameter unif. distributed, V2T, 2V/T.



Two-target algorithms

Exploration of arm k:

Run 1 RunZ2 Run 3 Run m+1
1111121112110 11110 111111110 ....... 111111111110
L1 L2

If L, < /1, explore a new arm
Else if L, < ¢,, explore a new arm
else keep it forever




Two-target algorithms

an ﬁ
Theorem: Select ¢, = [(ﬁJr 1) J , by = [m(

lim sup RW(Z) < (B_I_l)m (1+O(

T—oco T BFI Q

Example: parameters for unif. distribution,

0~ (n/2)Y3 4y ~ my/n/2.




Numerical Example

- Beta(1,2) mean reward distribution
- Expected failure rate = mean regret per round
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Summary: Infinite Bandits

- Regret lower bound and optimal algorithms when the
support of the reward distribution is 1, and the time

horizon is known
- What about unknown time horizon?

- What if the support of the reward distribution does not
include 17

- What if the reward distribution is only partially known?



2-C. Continuous Structured
Bandits



Continuous Structured Bandits

- Setof arms: [0, 1]
- Bernoulli reward for arm x of mean ()

- Reward realizations: (X, (x),n > 1) i.i.d. over time,
independent over arms

- Algorithm 7: selects arm =" (n) in round n

- Bandit feedback: X,, (2™ (n))

- Regret: T

R™(T)=Tp* — > p(x"(n))
n=1

p'= sup up(z)=p(z")
x€[0,1]

- Structure: x — u(x)is unimodal, linear, concave, Lipschitz, ...



2-C.1. Continuous Unimodal
Bandits

Combes, Proutiere. Unimodal Bandits without Smoothness,
arxiv 2014



Continuous Unimodal Bandit

0 x* 1

The mapping = — u(x) is unimodal.

61



Golden Section Algorithm
Kiefer 1953 pla)

*

(4

- Deterministic setting
- Evaluate the function in points x1, 2
- If p(x1) < p(z2), keep [x1, 1], else keep |0, z2]

- Design choices: (i) the ratio of the lengths of the old and new
new intervals is always r and (ii) we need to evaluate the
function once in each step



Golden Section Algorithm

Kiefer 1953 ()

A

*

(4

63



Stochastic Setting — Related Work

Smoothness assumption:
(z) — ()| X Cle —2*|%, a>0

- Regret lower bound (Dani et al. 2008 - linear): Q(v/T)

- Existing approaches yielding a regret O(\/T)
- Kleinberg 2004: discretization with step (log(T)/VT)/«
- Coppe 2009: stochastic gradient, works for & > 2 only
- Yu-Mannor 2011: stochastic version of the golden section algorithm,
assume the knowledge of o, C
- Without any knowledge on the function smoothness: interval
trimming algorithm yielding a regret O(ﬁ) , Combes-
Proutiere 2014



Interval Trimming

Idea: construct a sequence of intervals I7 C ... c I = 0, 1]
with 2™ € ﬂtT:OIt with high probability
Step t: start with I = [z, 7]

- Sample the function at K points =z < z1 < ... < xg < 7T until enough
information is gathered to eliminate either the left or right part of I*

1




The Failure of Golden Section
Algorithm -- Unknown Smoothness

- We need to sample at least 3 arms in the interior of the
interval to be trimmed to guarantee that z* € N/_,I* with
high probability




Optimal Interval Trimming

- Sample 3 points in the interior of the interval 1 < 5 < 23
- If 2™ > x9,and p(x1) < pu(xz) -- remove |z, x1]
- Ifz* < z1,and p(xs) < p(zs) -- remove |x3, T

- Sample long enough until f(z2) — f(x1) or fi(x2) — fi(x3)
is large enough

20




Optimal Interval Trimming

- Location test:

* [1 T 2
KL*(pas p2) = Ly <ppp [ K L(p1,

2

Sample x1,x2,x3 in a round robin fashion
Stop when there is m € {1, 3} such that:

t(n) KL (fim(n), fiz(n)) = log(T)

M1+,LL2)

)—I_KL(M27 9

If m =1, remove [z, x]

If m = 3, remove [z3,T]



Performance

Theorem: Let § = pu(x2) — p(xy) if * > 22, and
0 = p(xo) — u(xs) otherwise. The interval trimming procedure
has length O(6 % log(T)) and risk O(T ™).

Theorem: Assume |u(z) — p(z*)| “ X" Clz — z*|%, a>0.
Then the proposed algorithm has regret O(1/T log(T)).




Examples

0.8

0.6

0.4

0.2

1

0.8}

0.8

0.6

0.4

0.2

70



2-C.2. Continuous Lipschitz
Bandits



Related work

- Continuous set of actions (e.g. [0,1]): Agrawal 1995,
Kleinberg 2004, Kleinberg-Slivkins-Upfal 2008,
Bubeck-Munos-Stolz-Szepesvari 2008, ...

- For continuous bandits, algorithms should
1. Adapt the subset of arms to sample from

2. Optimally exploit the Lipschitz structure to select the arm
based on all past observations

- Existing algorithms perform 1, but not 2. (for 2., simple
UCB-like index are used ...)

- Alternative approach: optimal algorithm for discrete
bandits, and then optimal discretization of the set of
arms



Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008

0

- Maintains a set of active balls: A;

conf;(B) = 4\/ log(T)

1 4+ n¢(B)

domt(B) =B \ UB’E.At:'r(B’)<r(B)B,



Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008
0 1
1 1 B/
«' (B, B)

- Index of balls: I;(B) =r(B) + BmiB\ (U(B") +d(B, B"))
reAq

Uy(B) = jis(B) + r(B) + conf;(B)



Zooming Algorithm

- Kleinberg-Slivkins-Upfal 2008

0 1
B
«' J(B, B')

- Algorithm:

- Select a ball B with highest index and anarm y in B
- If confy(B) < r(B), activate the ball centered at y with radius r(B) /2

- Crude index, and sub-optimal structure exploitation



Optimal Discretized Algorithm

r—x”

w(z) — (™) "~ Cle—a*%,  a>0

Algorithm

1. Discretization of the set of arms: step size (log(T)/VT)"/°
2. Apply discrete bandit algorithms

The above algorithm is order-optimal, as (discretization
+KL-UCB), HOO algorithms, regret O(T"*/?)

The zooming algorithm does not take the smoothness into
account — in general sub-optimal, regret O(Tz/?’)



Example: Continuous set of arms

Triangular reward function
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Example: Continuous set of arms

Regret
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Summary: Continuous Bandits

- State-of-the-art algorithms apply an appropriate
discretization of the set of arms, and optimally exploit
the structure

- Discretization: depends on the smoothness of the
expected reward function

- Without smoothness: optimal location test + interval
trimming approach

- No problem-specific regret lower bound



2-D. Conclusions and Open
Problems



Conclusions: Stochastic Bandits

Regret: the right performance metrics when dealing with
uncertain and time-varying (non-stationary) environment

- Tracking the best decision with minimum exploration cost
- Many applications

A well developed theory (essentially in the control and stat.
communities, from the 70’s to the late 90’s)

Further insights and new applications (ML community)
Many open questions ...



Anytime Regret Guarantees

- Classical unstructured discrete bandits: the asymptotic
lower bound is not tight for small time horizons

regret §

T(K,0) rapidly grow with K!

lower bound —

time

T(K, )

- Optimality for small time horizon?

- Preliminary result: Guha 2014 (COLT), Thompson sampling
is 2-competitive for very specific problems



Discrete Structured Bandits

- Simple and yet asymptotically optimal algorithm for
generic structure?

- Graves-Lai lower bound indicates the numbers of times
sub-optimal arms should be selected
- These numbers solve a complex optimization problem
- ...that we need to solve to get asymptotic optimality
- What about the trade-off between complexity and regret?

- How does the lower bound scale with the number of arms?
- Example: combinatorial bandits (e.g. routing problems)
- Performance of Thompson sampling?



Continuous Structured Bandits

- Problem specific lower bounds?
- How to optimally exploit the structure? Linear, convex, and
other structure?

- The optimal discretization depends on the structure and
the smoothness of the expected reward function: is there
an algorithm learning the structure and the smoothness?



Bibliography

- Graves and Lai. Asymptotically efficient adaptive choice of control laws
in controlled Markov chains, 1997

- Garivier and Moulines. On Upper-Confidence Bound Policies for Non-
stationary Bandit Problems, 2011

- Agrawal. The Continuum-Armed Bandit Problem, 1995

- Kleinberg. Nearly tight bounds for the continuum-armed bandit
problem, 2004

- Kleinberg, Slivkins, and Upfal, Multi-armed bandits in metric spaces,
2008

- Bubeck, Munos, Stoltz, Szepesvari. X-Armed Bandits, 2011
- Mallows, Robbins. Some Problems of Optimal Sampling Strategy, 1964

- Berry, Chen, Zame, Heath, and Shepp, Bandit problems with infinitely
many arms, 1997

- Wang, Audibert, and Munos. Algorithms for infinitely many-armed
bandits, 2008



Bibliography

- Kiefer. Sequential minimax search for a maximum, 1953

- Guha and Munagala. Stochastic Regret Minimization via Thompson
Sampling, 2014



Thanks!

- Richard Combes:
https://dl.dropboxusercontent.com/u/19365883/site/

index.html

- Alexandre Proutiere: http://people.kth.se/~alepro/
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